

Subscriber access provided by V. Vernadsky | National Library of Ukraine

Review

Ligand Effects in Homogeneous Au Catalysis

David J. Gorin, Benjamin D. Sherry, and F. Dean Toste

Chem. Rev., 2008, 108 (8), 3351-3378 • DOI: 10.1021/cr068430g • Publication Date (Web): 25 July 2008

7.600, 2000, 100 (0), 3001 0010 1 Doi: 10.1021/01000400g 1 doi:10101001011 Doi:0 (veb). 20 daily

Downloaded from http://pubs.acs.org on December 24, 2008

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 3 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- · Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Ligand Effects in Homogeneous Au Catalysis

David J. Gorin, Benjamin D. Sherry, and F. Dean Toste*

Department of Chemistry, University of California, Berkeley, California, 94720

Received February 13, 2008

Contents

Jillettis	
1. Introduction	3351
1.1. Context and Meta-Review	3351
1.2. Scope and Structure of This Review	3352
2. Carbonyl Activation	3352
2.1. Asymmetric Catalysis	3352
2.2. With Achiral Catalysts	3353
2.3. Carbonylation	3353
Addition of Nucleophiles to Carbon	3353
π -Electrophiles	0000
3.1. To Alkynes	3354
3.1.1. Oxygen Nucleophiles to Alkynes	3354
3.1.2. Nitrogen Nucleophiles to Alkynes	3355
3.1.3. Carbon Nucleophiles to Alkynes	3355
3.1.4. Fluoride Nucleophiles to Alkynes	3357
3.2. To Allenes	3357
3.2.1. Oxygen Nucleophiles to Allenes	3357
3.2.2. Nitrogen Nucleophiles to Allenes	3359
3.2.3. Carbon Nucleophiles to Allenes	3360
3.3. To Alkenes	3361
3.3.1. Heteroatomic Nucleophiles to Alkenes	3361
3.3.2. Carbon Nucleophiles to Alkenes	3361
4. Cascade Reactions Initiated by Carbon	3361
Nucleophiles with π -Electrophiles	
4.1. Hashmi Phenol Synthesis	3361
4.2. 1,5 Enynes	3362
4.3. 1,6 Enynes	3363
4.4. 1, <i>n</i> -Allenynes	3365
4.5. 1, <i>n</i> -Allenenes	3366
4.6. 1,6-Diynes	3366
5. Cascade Reactions Initiated by Heteroatom Nucleophiles with π -Electrophiles	3366
5.1. Bond Scission	3367
5.1.1. Carbocationic Leaving Groups	3367
5.1.2. Cationic Heteroatomic Leaving Groups	3367
5.2. Addition of Nucleophiles	3368
5.2.1. Addition of Nucleophiles to <i>o</i> -Alkynyl Benzaldehydes	3368
5.2.2. Addition of Nucleophiles to Other Oxocarbenium Species	3369
5.3. Migration of Propargyl (and Other) Esters	3369
5.3.1. [2,3]-Migration of Propargyl Esters	3369
5.3.2. [3,3]-Migration of Propargyl Esters	3371
5.3.3. Other Ester Migrations	3371
6. Oxidation Reactions	3372

6.1. Oxidation of Alcohols	3372
6.2. Oxidative Cleavage of Olefins	3373
7. Reductive and Dehydrogenative Reactions	3373
7.1. Hydroboration/Diboration	3373
7.2. Silylation	3373
7.3. Hydrogenation	3374
8. Group Transfer Reactions	3374
8.1. Diazo-Derived Carbene Transfer	3374
8.2. Nitrene Transfer	3375
Activation of Terminal Alkynes	3375
9.1. With Carbonyl Electrophiles	3375
9.2. In Cross-Coupling Reactions	3375
10. Conclusions	3375
11. Acknowledgments	3376
12. References	3376

1. Introduction

1.1. Context and Meta-Review

Despite the ubiquity of metallic gold (Au) in popular culture, its deployment in homogeneous catalysis has only recently undergone widespread investigation. In the past decade, and especially since 2004, great progress has been made in developing efficient and selective Au-catalyzed transformations, as evidenced by the prodigious number of reviews available on various aspects of this growing field. Hashmi has written a series of comprehensive reviews outlining the progression of Au-catalyzed reaction development, and a number of more focused reviews provide further insight into particular aspects of Au catalysis. A brief metareview of the available range of perspectives published on Au catalysis helps to put this *Chemical Reviews* article in context.

The vast majority of reactions developed with homogeneous Au catalysts have exploited the propensity of Au to activate carbon—carbon π -bonds as electrophiles. Gold has come to be regarded as an exceedingly mild, relatively carbophilic Lewis acid, and the broad array of newly developed reactions proceeding by activation of unsaturated carbon—carbon bonds has been expertly reviewed.²

Further reviews and highlights on Au catalysis focus on particular classes of synthetic reactions. An excellent comprehensive review of Au-catalyzed enyne cycloisomerizations is available.³ Even more focused highlights on hydroarylation of alkynes,⁴ hydroamination of C–C multiple bonds,⁵ and reactions of oxo-alkynes⁶ and propargylic esters⁷ provide valuable perspectives on progress and future directions in the development of homogeneous Au catalysis.

Most of the reviews on Au catalysis emphasize broad or specific advances in synthetic utility. Recently, we have

^{*} Author for correspondence. Telephone: 510-642-2850. Fax: 510-643-9480. Email: fdtoste@berkeley.edu.

David J. Gorin received his A.B. from Harvard University in 2003. As an undergraduate, he undertook research in materials science at Bell Laboratories, Lucent Technologies, molecular biology at Columbia Medical School, and medicinal chemistry at Merck Research Laboratories. He received his PhD in 2008 from the University of California, Berkeley, under the direction of Professor F. Dean Toste. He is currently a postdoctoral fellow in the laboratories of Professor David Liu at Harvard University.

Benjamin D. Sherry received a B.S. degree in chemistry from Case Western Reserve University in 2002. He carried out doctoral research under the supervision of Professor F. Dean Toste at the University of California, Berkeley, and obtained his Ph.D. in 2007. He is currently a postdoctoral fellow in the laboratory of Professor Fürstner at the Max-Planck-Institut für Kohlenforschung, Mülheim, Germany.

F. Dean Toste received his B.Sc. and M.Sc. degrees in chemistry from the University of Toronto where he worked with Prof. Ian W. J. Still. In 1995, he began his doctoral studies at Stanford University under the direction of Professor Barry M. Trost. Following postdoctoral studies with Professor Robert H. Grubbs at Caltech, he joined the faculty at the University of California, Berkeley, in 2002, and was promoted to Associate Professor in 2006. Current research in his group is aimed towards the design of catalysts and catalytic reactions and the application of these methods to chemical synthesis.

invoked relativistic effects to provide a framework for understanding the observed reactivity of Au catalysts, in order to complement empirical advancements.⁸ In this Chemical Reviews article, we attempt to enumerate the ways in which selectivity can be controlled in homogeneous Au catalysis. It is our hope that lessons to guide catalyst selection and the design of new catalysts may be distilled from a thorough evaluation of ligand, counterion, and oxidation state effects as they influence chemo-, regio-, and stereoselectivity in homogeneous Au catalysis.

1.2. Scope and Structure of This Review

This review will address ligand effects in homogeneous catalysis through December 2007. Obvious differences in reactivity and selectivity arising from changing neutral or anionic ligands will be comprehensively addressed, with special emphasis on ligands and complexes enabling enantioselective catalysis. Instances where catalyst choice, including ligand, counterion, or oxidation state of Au, enables control over reaction pathways will be comprehensively reviewed, including influence over diastereoselectivity, regioselectivity, and chemoselectivity. There are many instances where catalyst choice provides slight improvement in reaction yields or efficiencies; extensive, but not comprehensive, discussion of this phenomenon is included herein.

The review is organized primarily by reactivity pattern, so that privileged ligands and catalysts for a given class of reactions are highlighted. Further divisions within the broad section headings are organized by substrate class. We begin by addressing the Hayashi/Ito asymmetric aldol reaction, which remains the quintessential and seminal example of ligand effects in homogeneous Au catalysis, and preceded the current surge of interest in the field by over a decade. The review then proceeds according to our perception of the most broadly studied subfields of homogeneous Au catalysis, with substantial weight given to advances within the past year. Due to the ever accelerating rate of publications on Au catalysis, great strides in the field have been made even since the last comprehensive review in 2007. 1c

2. Carbonyl Activation

2.1. Asymmetric Catalysis

In 1986, long before the current surge in interest in homogeneous Au catalysis, Ito, Sawamura, and Hayashi reported the asymmetric reaction of various aldehydes (i.e., 1) with isocyanoacetate 2, catalyzed by [Au(CNCy)₂]BF₄ and chiral ferrocenylphosphine ligand 4 (Scheme 1).9 High diastereo- and enantioselectivities were observed for a series of aliphatic and aromatic aldehydes. The amine group of the ligand was essential for achieving high enantioselectivity in the reaction, and it was proposed that the pendant Lewis base enforced an organized transition state structure via cyanoac-

Table 1. Enantioselective [3 + 2] Dipolar Cycloadition

entry	catalyst	yield	ee
1	(R)-Binap(AuOBz) ₂	78%	8%
2	(R)-Segphos(AuOBz) ₂	81%	40%
3	(R)-xylyl-Binap(AuOBz) ₂	63%	24%
4	(R)-DTBM-Segphos(AuOBz) ₂	81%	83%
5	(S)-Cy-Segphos(AuOBz) ₂	70%	-88%

etate deprotonation.¹⁰ Spectroscopic studies, particularly by NMR, suggested that both phosphines of the ligand might associate to Au.¹¹ Thus, in contrast to the vast majority of Au-catalyzed reactions that were subsequently developed, the asymmetric Aldol is proposed to proceed via a four-coordinate (bisphosphine)Au(I) intermediate.¹²

For reasons that remain unclear, the findings of Ito, Sawamura, and Hayashi did not result in the large-scale deployment of chiral Au-complexes as catalysts for the activation of polar functionality. Recently, Toste disclosed the enantioselective 1,3-dipolar cycloaddition of Münchnones with electron-deficient alkenes, which is proposed to proceed via activation of a cyclic azlactone 5 by cationic Au(I) to generate the reactive Münchnone species (Table 1).¹³ The planer chiral skeleton Segphos (8) provided superior enantioselectivity compared to Binap (7) (entries 1 and 2).14 Varying the other substituents on the phosphine provided striking results; no clear trend emerged with increasing steric bulk, and DTBM-Segphos (10) and Cy-Segphos (11) provided similar ee, suggesting that more electron-rich ligands imparted increased selectivity (entries 4 and 5). Changing the solvent to fluorobenzene with catalytic Cy-Segphos(AuOBz)₂ provided optimal enantioselectivities (76% yield, 95% ee for 6).

For this and most of the other enantioselective Aucatalyzed reactions discovered thus far, bisphosphine digold(I) complexes were used; the phosphorus:gold stoichiometry for Au(I) complexes derived from ligands **7–11** is 1:1, rather than 2:1 as in the **4**-ligated Au(I) catalyst used by Hayashi. Consequently, most Au(I) catalysts to date fit the general observation that Au(I) prefers a two-coordinate, linear coordination geometry. Stable, isolable chiral phosphine-gold(I) benzoate complexes were initially developed by Toste for allene hydroamination, and generally are less reactive catalysts than cationic Au(I) species with relatively noncoordinating counterions.

Table 2. Tandem Allylation of Dienal 12

entry	catalyst	13 (yield, %)	14 (yield, %)
1	HOTf	0	65
2	$BF_3 \cdot E_2O$	16	38
3	AuCl ₃	36	27
4	Ph ₃ PAuCl/AgSbF ₆	78	0

2.2. With Achiral Catalysts

Lewis acidic activation of polar functionality in a racemic sense has also been relatively undeveloped with Au catalysts. Liu reported a remarkable example of catalyst-dependent selectivity in the Au-catalyzed Prins reaction of *cis*-2,4-dien-1-als and external nucleophiles (Table 2).¹⁷ In the reaction of **12** with allyltrimethylsilane, Ph₃PAuCl/AgSbF₆ provided the double-addition product **13** in high yield (entry 4). Other Au sources, as well as other Lewis and Brønsted acids, provided significant or even exclusive quantities of elimination product **14**, which was formed as a mixture of olefin regioisomers (entries 1–3). The reaction presumably proceeds via cyclization and initial formation of a Au alkoxide, and given the observed products, the rate of proton elimination from this intermediate is retarded relative to that of intermolecular trapping when Au(I) is the catalyst.

Gold catalysts also have potential applications in polymerization chemistry. Recently, Ghosh applied *N*-heterocyclic carbene (NHC) Au(I) complexes to the polymerization of lactide.¹⁸

2.3. Carbonylation

Souma and Xu reported the carbonylation of olefins by a catalyst formed from Au_2O_3 and H_2SO_4 to produce carboxylic acids. On the basis of spectroscopic studies, the authors proposed that $Au(CO)^+$ and $Au(CO)_2^+$ were present in situ and that $Au(CO)_2^+$ was a catalytically active species. In 2001, Deng investigated amines as nucleophiles in place of olefins and reported the Au-catalyzed carbonylation of amines to synthesize carbamates. A variety of complexes were competent catalysts for the carbonylation of 15 to 16, but the most efficient and selective catalysts were those formed with greater than 1:1 stoichiometry of phosphine:gold (Table 3, entries 3 and 5). Inferior selectivity was observed with a Au(III) precatalyst (entry 1). Given the harsh reaction conditions, the nature of the active catalyst remains an open question.

3. Addition of Nucleophiles to Carbon π -Electrophiles

This section includes reactions that proceed via addition of a nucleophile to a π -electrophile with subsequent proton transfer to close the catalytic cycle. Reactions proceeding by more complex mechanisms where the initially formed cation induces further bond scission and/or formation are covered in sections 4 and 5.

noreaction

Table 3. Carbonylation of Aniline

entry	precatalyst	TOF^a	selectivity ^b (%)
1	HAuCl ₄	11	37
2	Ph ₃ PAuCl	14	70
3	(Ph ₃ P) ₂ AuCl	23	60
4	Ph ₃ PAuNO ₃	16	43
5	$Ph_3PAuCl + PPh_3$	36	89

^a Moles of substrate converted per moles of Au per hour. ^b % **16**/% conversion of **15**.

Table 4. Hydroalkoxylation of Propyne

entry	ligand	initial TOF (h ⁻¹)	TON
1	AsPh ₃	430	_
2	PEt_3	550	_
3	PPh_3	610	>5000
4	$P(4-F-Ph)_3$	640	_
5	$P(4-OMe-Ph)_3$	1200	_
6	$P(OPh)_3$	1500	2500

3.1. To Alkynes

3.1.1. Oxygen Nucleophiles to Alkynes

Fukuda and Utimoto first reported the addition of water and methanol to alkynes catalyzed by sodium tetrachloroaurate.21 In a seminal contribution, Teles reported the intermolecular addition of alcohol nucleophiles to internal and terminal alkynes catalyzed by cationic phosphinegold(I) complexes on kilogram scale. 22 Ligand effects on the reactivity of the Au catalyst were examined for the addition of methanol to 17, which provided the Markovnikov addition product 18 (Table 4). Catalyst activity inversely correlated with the Lewis basicity of the ligand, consistent with the hypothesis that increased electrophilicity of the Au catalyst confers greater reactivity. The comparison of PPh₃ with P(OPh)₃ indicates that higher reactivity comes at the expense of catalyst stability (entries 3 and 6). Several of Teles' observations later became the basis for further catalyst design and employment: an N-heterocyclic carbene (NHC) ligand catalyzed the hydroalkoxylation, while trinuclear Au complex [(Ph₃PAu)₃O]BF₄ was not sufficiently reactive. Teles also examined multiple methods for generating the cationic Au(I) catalysts, including protonation of the corresponding methyl complexes and halide or nitrate abstraction with silver salts or BF₃ • Et₂O, respectively.

Teles' studies focused predominately on the addition of alcohol nucleophiles to alkynes, and hydration was only briefly mentioned in a patent filed contemporaneously.^{22b} Tanaka later showed that phosphine-stabilized Au(I) complexes were efficient catalysts for addition of water to alkynes.²³ Methyl(triphenylphosphine)Au(I), in concert with sulfuric acid, provided an active catalyst for hydration of terminal and internal alkynes. High yields of the Markovnikov addition product were obtained with unsymmetrical alkynes, typically with low catalyst loading. Furthermore,

Table 5. Hydration of 1-Octyne

Table 6. Hydration of 3-Hexyne with Au(I) Carboxylate Precatalysts

	— -	LAu(O ₂ CC ₂	F ₅), 5.25%	BF ₃ •OEt ₂	0 =.
El	t- Et H ₂ O (4 equiv), THF, 45 °C Et 22				22 Et
entry	cat. mol %	ligand	time (h)	GC yield (%)	$TOF(h^{-1})$
1	0.134	PPh ₃	1.8	51.2	213
2	0.137	$P(p-tol)_3$	2	43.2	163
3 ^a	0.095	PMe_3	2	18.8	99

^a Decomposition to metallic gold was observed within minutes.

Scheme 2

4

the reaction showed promising chemoselectivity, as nitrile hydration was not observed.

When the amount of catalyst was brought below 0.1 mol% relative to 19, poor conversion to 20 resulted, and a metallic precipitate was observed in the reaction mixture (Table 5, entry 1). Interestingly, the addition of electron-withdrawing ligands returned high activity (TON > 9000), and abolished precipitate formation (entries 2 and 3). The additive was proposed to exert a stabilizing effect on the Au complex, which enhanced catalyst lifetime without adversely impacting reactivity. Ligand basicity was an important parameter to consider, as additional triphenylphosphine completely inhibited the catalytic reaction (entry 4).

Schmidbaur examined isolable phosphinegold(I) carboxylates as catalysts for the hydration of 3-hexyne (Table 6). Let was necessary to add BF₃ • Et₂O to generate a cationic catalyst, demonstrating the relatively low reactivity of Au carboxylate complexes. Ligand effects were examined, though uniformly lower catalyst efficiencies were observed relative to those previously disclosed.

Although Teles mentioned in a footnote that nucleophilic carbenes are suitable ligands on Au for the hydration of alkynes, a more extensive study of this ligand type was deferred for several years. In 2003, Herrmann applied a Au(I) acetate complex bearing NHC ligand 23 to the hydration of 21 (Scheme 2).²⁵ The (NHC)Au(I) carboxylate was synthesized from the corresponding chloride complex.

Laguna employed sulfonated phosphine ligands to produce water-soluble phosphinegold(I) σ -acetylide complexes, such as **24**, which were examined as catalysts for alkyne hydration in H₂O (Figure 1).²⁶ Protic acid was required to generate an active catalyst, presumably via protonation of the acetylide

30 min

10 min

7%

57%

Figure 1.

Scheme 3

ligand. High TOFs (>1000 h⁻¹) were obtained in some cases, and the feasibility of catalyst recycling was demonstrated by extraction of the product with organic solvent and reusing the Au-containing aqueous layer with new substrate.

Water-soluble Au(II) complex 25 with cocatalytic acid was also a viable catalyst for the hydroalkoxylation of phenylacetylene.²⁷ Although the TOF and TON compare poorly with other identified catalysts, this class of Au compounds has only been sparingly investigated in catalytic transformations. NHC-ligated Au(III) complexes have also been tested for the hydration of phenylacetylene, and TONs of \sim 10 were achieved.²⁸ Organometallic Au(III) complexes were similarly investigated, with TONs of up to 200 obtained.²⁹

Nolan has investigated the formation of α,β -unsaturated carbonyl compounds from propargyl esters with cationic NHC-supported Au catalysts (Scheme 3).³⁰ Mechanistic work suggests that the transformation of 26 to 28 does not proceed via initial [3,3]-rearrangement of the propargyl ester, but rather by an S_N2'-type addition of water to the alkyne with displacement of the ester to form intermediate 27. Sterically bulky NHC ligands were far superior to less encumbered ligands (I-t-Bu vs ITM). Zhang used phosphinegold(I) complexes for the same transformation.³

Unsurprisingly, the intramolecular addition of oxygen nucleophiles to alkynes is also readily catalyzed by Au complexes. Pale employed catalytic AuCl/K₂CO₃ in the cyclization of acetylenic alcohols and carboxylates to form oxacycles, a rare demonstration of a catalyst mixture including Au and inorganic base. 32 An effective catalyst system could also be formed using Ph₃PAuCl/K₂CO₃, while Ph₃PAuCl alone did not catalyze the reaction.

3.1.2. Nitrogen Nucleophiles to Alkynes

The Au-catalyzed intramolecular addition of amine nucleophiles to carbon π -electrophiles dates to the work of Utimoto in 1987.³³ In 2003, Tanaka applied the Teles system for intermolecular hydroalkoxylation/hydration of alkynes to imine synthesis; he found that polyoxometalates are equal or superior to organic acids for the generation of an active Scheme 4 2% catalyst CICH2CH2CI, 40 °C catalyst time yield Ph₃PAuNTf₂ 49% 4 h

Ph₃PAuCl/AgOTf

Ph₃PAuCl/AgBF₄

Scheme 5

Au catalyst from Ph₃PAuCH₃.³⁴ A tandem intramolecular hydroamination/intermolecular hydroamination sequence was developed by Li for the synthesis of N-vinyl indoles from o-alkynyl anilines.³⁵ Gold(III) complexes were among several viable catalysts tested, although the combination of AuCl₃/ AgOTf permitted the lowest reaction temperature of all the catalysts.

A strong counterion effect was observed by Shin in the intramolecular cyclization of propargyl trichloroacetimidates (Scheme 4).³⁶ While treatment of 29 with Ph₃PAuCl and AgOTf resulted in only trace formation of 30, use of Ph₃PAuNTf₂ or Ph₃PAuCl/AgBF₄ produced 30 in moderate yield. Although the different reaction times and lack of data on the mass balance of the reaction preclude a rigorous comparison, these results suggest that counterion effects may confound reaction optimization efforts. In this case, it is possible that Brønsted acid generated in situ from the Ag or Au salts mediates decomposition of the starting material, product, or both.

3.1.3. Carbon Nucleophiles to Alkynes

3.1.3.1. Hydroarylation. In an early example of carbon carbon bond formation using alkynes and catalyzed by cationic Au(I), Reetz investigated the intermolecular hydroarylation of alkynes.³⁷ The differing regioselectivities observed for addition of mesitylene (31) to electron-rich alkynes such as 32 versus electron-poor alkynes such as 34 may be attributed to substrate control. Notably, different Au sources proved optimal for each type of substrate: AuCl₃/ AgSbF₆ for addition to phenyl acetylene (32) (Scheme 5) and cationic phosphinegold(I) complexes for addition to methylacetylene carboxylate (34) (Table 7).

A closer examination of the optimization experiments for the hydroarylation of 32 with 31 to produce 33 illustrates that cocatalytic AgSbF₆ enhances the reaction. Strikingly, the use of AgClO₄ with AuCl₃ provides an inferior catalyst to AuCl₃ alone. Neither cationic Au(I) nor AgSbF₆ catalyze this reaction.

For the hydroarylation of ynoate **34**, the reaction proceeds with high regioselectivity to 35 in similar yield regardless of the oxidation state of the precatalyst. The diastereomeric

Table 7. Hydroarylation of Ynoate 34

entry	catalyst	<i>T</i> (°C)	% yield (<i>Z:E</i>)
1	5% AuCl ₃ /15% AgBF ₄	60	60 (78:22)
2	5% Ph ₃ PAuCl/AgBF ₄	60	57 (100:1)
3	3% Ph ₃ PAuCl/BF ₃ •Et ₂ O	50	62 (100:1)
4	3% AuCl/DCPB/BF ₃ •Et ₂ O	50	71 (100:1)

DCPB =
$$PCy_2$$

Table 8. 7-exo-dig vs 8-endo-dig Hydroarylation

entry	catalyst	yield (%)	38:39
1	40	82	100:0
2	$AuCl_3$	75	0:100
3	AuCl	70	0:100
4	Ph ₃ PAuCl/AgSbF ₆	80	1.3:1

ratio of the olefin isomers formed does vary with the catalyst, and cationic Au(I) catalysts were pursued owing to the superior diastereomeric ratios obtained (Table 7, entries 2–4). It is unclear whether the lower dr observed with AuCl₃ results from a kinetic or thermodynamic process (entry 1). A number of methods to generate the catalyst were successfully tested, including the use of AgBF₄ and BF₃•Et₂O for chloride abstraction from phosphinegold(I)chloride (entries 2 and 3) and *in situ* mixing of AuCl, **36**, and a halide abstraction agent (entry 4).

Echavarren examined the intramolecular hydroarylation of alkynes with indoles, observing that the regioselectivity (formal 7-exo-dig vs 8-endo-dig) of the cyclization is highly dependent upon the catalytic Au source (Table 8). In the cyclization of 37, Ph₃PAuCl/AgSbF₆ resulted in little discrimination between the pathways leading to 38 and 39 (entry 4). Remarkably, AuCl and AuCl₃ overwhelmingly provided the eight-membered ring product 39 (entries 2 and 3). Diametrically, isolable complex 40 featuring a Buchwald-type ligand³⁹ provided exclusively the seven-membered ring product 38 (entry 1). Such cationic Au acetonitrile complexes provide an additional isolable, stable alternative to the *in situ* generation of cationic Au complexes from phosphine-gold(I) chloride and silver salts.

Table 9. Rate Acceleration with Tri(ethynyl)phosphine Ligands

Me
$$CO_2Me$$
 CO_2Me
 C

entry	ligand	time	¹ H NM R yield
1	PPh ₃	1.5 h	3%
2	Cy₂P MeO, MeO	1.5 h	<1%
3	P(OPh) ₃	6 h	21%
4	$P \leftarrow SiAr_3)_3$ $Ar = \{ - ($	2.5 h	4%
5	$Ar = \begin{cases} SiMe_3 \\ SiMe_3 \end{cases}$	5 h	70%
6	$Ar = \begin{cases} -t - Bu \\ -OMe \end{cases}$	1.5 h	100%

3.1.3.2. Enol Nucleophiles. In 2004, Toste reported the 5-*exo*-dig addition of β -ketoesters to alkynes catalyzed by triphenylphosphinegold(I) chloride and silver triflate. ⁴¹Au(III) chloride led to complete consumption of the starting material, but furnished only 30% of the desired product. The cationic Au source initially used by Hayashi/Ito, [(CyNC)₂Au]PF₆, provided no catalytic activity. Yang demonstrated that thiourea-supported Au(I) chloride complexes also catalyzed the cyclization reaction upon treatment with AgOTf, albeit far more slowly. ⁴²

Sawamura observed remarkable rate accelerations when triethynylphosphine-ligated Au(I) catalysts were used for 6-exo-dig β -ketoester additions, as in the cyclization of **41** to 42 (Table 9, entries 5 and 6).⁴³ It was proposed that a decrease in the entropy of activation, enforced by the "holey catalytic environment" of the ligand, was the source of increased catalytic activity in the cyclization. The triflimide (NTf₂) anion employed by Sawamura was initially used in Au catalysis by Gagosz, and generally behaves similarly to other weakly or noncoordinating counterions.⁴⁴ One key difference is that phosphinegold(I) triflimide salts are isolable and bench stable, in contrast to other cationic Au salts (i.e., SbF₆⁻, BF₄⁻, OTf⁻), providing a preparative advantage. An analogous cationic Au(I)-catalyzed reaction using electronrich alkenes, rather than 1,3-dicarbonyls, as the nucleophiles to produce similar products was studied by Echavarren, who found that an array of phosphine ligands were suitable.⁴⁵

A striking dimerization reaction was observed by Hashmi while examining the reactivity of *o*-alkynyl benzyl alcohol **43** with Au catalysts (Scheme 6). ⁴⁶ Generally, AuCl₃ led to

higher selectivity for the dimerization product 49, while the use of chloride-bridged cationic Au(I) complex [(Mes₃-PAu)₂)Cl]BF₄ provided larger quantities of the expected isochromene. The authors proposed that the reaction proceeds via transient formation of an α-carbene Au-carbenoid 45 from coordination of Au to the alkyne of 44, which subsequently undergoes C-H insertion to form 46. A mechanism proceeding through formation of enol tautomer 47 followed by Au-catalyzed addition to the alkyne, in analogy to the cyclizations discussed above, is also possible.⁴⁷ Protonation of **48** followed by olefin isomerization would provide 49.

3.1.3.3. Cyclocarbinol Nucleophiles. The ring expansion of strained alkynyl cyclocarbinols was investigated by Toste. 48 The efficiency of the reaction was dependent upon ligand; (4-CF₃-Ph)₃PAuCl/AgSbF₆ provided exomethylene cyclobutane 51 from alkynyl cyclopropanol 50 in optimal yield and rate (Table 10). Triarylphosphines were generally superior to other examined ligands. A variety of propargyl cyclopropanols and cyclobutanols readily isomerized. In all cases, a single olefin isomer was obtained; the authors found this to be a kinetic process, and, with additional supporting evidence, proposed a mechanism proceeding by activation of the alkyne followed by Pinacol-type ring expansion.

Table 10. Ring Expansion of Propargyl Cyclopropanol 50

entry	ligand (L)		time	yield ^b
1		R = H	115 min. ^a	95%
2	(- /) -	R = MeO	160 min. ^a	90%
3	R-()P	R = CI	85 min. ^a	97%
4	3	$R = CF_3$	25 min. ^a	99%
5	t-Bu₃P		24h	54%
6	Me ^{-N} →N·/Pr		24h	63%
^a Time	6 Me-N-N-N-IPr 24h 63% a Time to 99% conversion of SM. b Determined by H NMR.			

Table 11. Cyclization of γ -Allenyl Alcohols

entry	catalyst	solvent, (T)	time	yield (%)
1	AuCl ₃ ^a	CH ₂ Cl ₂ (rt)	6 d	58
2	AuCl ₃ /pyridine	CH ₂ Cl ₂ (rt)	4.5 h	64
3	AuCl ₃ /2,2'-bipyridine	CH ₂ Cl ₂ (rt)	5 d	86
4	Ph ₃ PAuCl/AgBF ₄	CH ₂ Cl ₂ (rt)	1.5 h	60
5	Ph ₃ PAuCl/AgBF ₄	toluene (0 °C)	1.25 h	66

3.1.4. Fluoride Nucleophiles to Alkynes

Sadighi investigated the nucleophilic addition of fluoride to alkynes catalyzed by Au(I) complexes, which resulted in trans-hydrofluorination products. 491 Although triphenylphosphine and sterically unencumbered NHC ligands on Au resulted in low yields, bulkier NHC ligands efficiently provided vinyl fluorides. In the course of these investigations, two stable (NHC)Au(I) complexes were isolated, including an η^2 -alkyne complex and a complex with a *tert*-butoxide counterion. The (NHC)Au(tert-butoxide) was a competent catalyst for the reaction as compared with the analogous catalysts derived from (NHC)AuCl and AgBF₄.

3.2. To Allenes

3.2.1. Oxygen Nucleophiles to Allenes

3.2.1.1. Hydroalkoxylation. Krause noted significant differences in reactivity for the Au-catalyzed cyclization of β -hydroxy allenes to dihydropyrans upon screening multiple catalytic Au sources and additives (Table 11).⁵⁰ Either the rate or yield of the AuCl₃-catalyzed transformation of 52 to 53 could be improved upon addition of pyridine or 2,2bipyridine, respectively (entries 2 and 3). The highest reaction rates were observed with cationic Au(I) catalysts, even at decreased temperature (entries 4 and 5).

Krause's investigation of chirality transfer in the cyclization of diastereomerically enriched allenyl alcohols is illustrative of the possibility that optimization of the Au catalyst may impact not only the desired transformation, but also other pathways available to the substrate (Table 12).⁵¹ In this case, epimerization of both allene 54 and dihydrofuran

Table 12. Chirality Transfer From Stereodefined Allenyl Alcohols

Table 13. 5-exo-trig vs 6-exo-dig Cyclization

55 may be catalyzed by various Au or other Lewis acidic species formed *in situ* (entries 1 and 2). ^{47c} The addition of bipyridine as an additive permitted the isolation of highly diastereoenriched dihydrofurans (entries 3 and 4); the authors propose that the bipyridine acts as a ligand to attenuate the Lewis acidity of the catalyst, slowing epimerization. It is also possible that addition of a base helps to buffer small amounts of Brønsted acid generated under the reaction conditions. Notably, lowering the reaction temperature without additive provided the same benefit as adding bipyridine (entry 5).

In 2006, Widenhoefer reported the Au-catalyzed intramolecular hydroalkoxylation of allenes. ⁵² Choice of counterion in the cocatalytic silver salt was crucial to optimizing the regioselectivity of the nucleophilic addition in reactions where 5-exo-trig- and 6-exo-dig-derived products were competitively formed. For example, treatment of **56** with 5% (o-biphenyl)(t-Bu)₂PAuCl/AgOTf provided a 1.3:1 mixture of **57** and **58** (Table 13, entry 1), while use of the same Au complex with AgOTs provided exclusively the 5-exo product **57** in 96% yield (entry 2). This selectivity contrasts nicely with that observed for a previously employed Pt(II) complex (entry 3). ⁵³

3.2.1.2. Asymmetric Hydroalkoxylation and Hydrocarboxylation. In 2007, Widenhoefer described the asymmetric intramolecular hydroalkoxylation of allenes, as exemplified by the transformation of **59** to **60** (Scheme 7). Hydroalkoxylation to afford tetrahydrofuran and tetrahydropyran architectures was investigated. Of the chiral ligands examined on Au(I), Biphep derivative **62**⁵⁵ provided optimal enantioselectivities in conjunction with AgOTs as the halide abstraction reagent. Catalyst control of the sense of asymmetric induction was absolute, overriding any bias that might arise due to the chirality of the allene. Chiral allenes reacted to afford products in the same enantiomeric series, which differed only in olefin geometry, as demonstrated by the hydrogenation of **60**, a mixture of *E/Z* olefin isomers, to form **61** in the expected ee.

In a paradigm shift for enantioselective Au catalysis, Toste then reported that the use of chiral counterions, rather than chiral neutral ligands, could provide high enantioselectivity Scheme 7 n-C₅H₁₁ 2.5% L(AuCI)2, 5% AgOTs PhMe, -20 °C 94% yield, 1:1 E:Z, >95% ee 60 59 H₂, Pd/C 84% yield MeOH 90% ee $P(3,5-(t-Bu)_2-4-OMe-Ph)_2$ MeC n-C₅H₁₁ MeC $P(3,5-(t-Bu)_2-4-OMe-Ph)_2$ (S)-DTBM-OMe-Biphep 62

Table 14. Chiral Counterion Effects in a Tetrahydrofuran Synthesis

entry	ligand (L)	X	yield (%)	ee (%)
1	(R)-3,5-xylyl-BINAP	BF_4	68	0
2	(R)-3,5-xylyl-BINAP	OPNB	89	8
3	(R)-DTBMSegphos	BF_4	79	2
4	dppm	65	76	65
	CO ₂ -		R	0

O₂N OPNB 65
$$R = 2,4,6-(i-Pr)_3-C_6H_2$$

in additions of oxygen nucleophiles to allenes.⁵⁶ In the hydroalkoxylation of γ -hydroxy allenes, neither noncoordinating (BF₄) nor more coordinating (OPNB) counterions associated with dicationic chiral bisphosphine(digold) species induced significant enantioselectivity in the cyclization of 63 to 64 (Table 14, entries 1-3). Chiral counterions with nonchiral phosphines were then investigated, and high ee was obtained. Chiral Binol-derived phosphoric acid 65 in conjunction with the dppm ([bis(diphenyl)phosphino]methane) ligand proved optimal (entry 4). 57,58 Consistent with a mechanism involving intimate ion pairing, changing the solvent to benzene from methylene chloride provided tetrahydrofuran 64 from 63 in 90% yield and 97% ee. Some dependence of the ee on the nonchiral phosphine was observed, as Ph₃PAuCl provided lower ee compared to the dppm complex.

When attempting to extend the chiral counterion strategy to carboxylate nucleophiles, Toste found that neither chiral phosphine ligands nor chiral organophosphate counterions provided high levels of enantioselectivity (Table 15, entries 1 and 2). Crucially, use of both chiral components together synergistically provided higher enantioselectivity in the cyclization of **66** to γ -lactone **67**. Both the mismatched (entry 3) and matched (entry 4) cases were identified, indicating that the transition state for the enantio-determining step is

Table 15. Enantioselective Cyclization of Allenyl Carboxylate 66

influenced by both the ligand on Au and the counterion, and providing another promising avenue for rendering catalytic reactions asymmetric in the future.

3.2.1.3. Isomerization of Allenyl Ketones. In 2005, while studying the cyclization of haloallenyl ketone **68**, Gevorgyan reported divergent product distributions favoring either 71 or 75 depending upon the oxidation state of the Au precatalyst (Scheme 8).⁵⁹ The divergent product selectivity was proposed to be a consequence of the increased oxophilicity of Au(III) relative to Au(I). In the Au(III)-catalyzed reaction, activation of the carbonyl induces bromonium ion formation. Intermediate 70 then cyclizes to 3-bromo-furan 71. With Au(I), activation of the allene by the catalyst produces 73/74, which undergoes [1,2]-H-shift to liberate 2-bromo-furan 75. Higher selectivity for the formation of 75 was observed with Et₃PAuCl than with Ph₃PAuCl. Since no mention of a cocatalytic halide abstraction agent is made, this appears to be a rare example of π -acidic activation by a neutral phosphinegold(I) halide.

Che applied Au(III)porphyrin complexes to the cycloisomerization of allenones to furans.⁶⁰ The porphyrin precatalysts offered superior yields compared to other Au complexes under the reaction conditions, and, importantly, showed little evidence of decomposition, in contrast to the instability generally observed with AuCl₃. The catalyst was subjected to ten cycles of reaction, isolation, and resubjection to substrate, demonstrating over 800 turnovers per reaction and a total TON of 8300.

3.2.2. Nitrogen Nucleophiles to Allenes

The Au-catalyzed intramolecular hydroamination of allenes has been extensively investigated by Krause.⁶¹ The intermolecular hydroamination of allenes was disclosed by Yamamoto in 2006.⁶² Initially, the addition of anilines to

Scheme 9

Table 16. Counterion Effects in Enantioselective Allene Hydroamination

entry	X	% cocatalyst	yield (%)	ee (%)
1	Cl	6 AgBF ₄	82	1
2	Cl	3 AgBF ₄	81	51
3	Cl	6 AgOBz	27	98
4	Cl	6 AgOPNB	76	98
5	OPNB	none	88	98

allenes was found to be optimally catalyzed by AuBr₃. Further studies to develop conditions for the use of morpholine (77) as the nucleophile with allene 76 demonstrated the need for an alternative catalyst; halide salts such as AuBr₃ were not suitable (Scheme 9).⁶³ Instead, cationic phosphinegold(I) catalysts were successfully employed in the synthesis of **78**. The authors noted that optimal yields were obtained with ortho-substituted triaryl phosphine ligands, and suggested that a steric, rather than electronic effect, was responsible for improving the reaction efficiency.

Intramolecular hydroamination of allenes has recently emerged as a proving ground for the potential of modulating both the ligand and counterion of phosphinegold(I) catalysts to achieve high enantioselectivities. Initially, Toste subjected **79** to an *in situ* generated catalyst formed from 3% (*R*)-xylyl-Binap(AuCl)₂ and 6% AgBF₄, which produced the expected pyrrolidine 80 in high yield but dismal ee (Table 16, entry 1). 16 Varying the stoichiometry of the silver salt relative to Au revealed marked differences in selectivity: use of 3% AgBF₄ with 3% (R)-xylyl-Binap(AuCl)₂ produced 80 in 51% ee (entry 2).

Given the unexpected influence of the counterion stoichiometry on enantioselectivity, other, more coordinating counterions were screened in the hydroamination. This represented the first use of such counterions in asymmetric catalysis with Au, and contrasted previous investigations of Au(I) carboxylates, which generally were precatalysts that required further activation by Lewis acids (see section 3.1.1). Although the benzoate anion provided superb enantioselectivity, catalyst reactivity was depressed (entry 3). Further screening of substituted benzoates demonstrated that 4-nitro-benzoate struck an ideal balance between reactivity and selectivity (entry 4), presumably due to attenuated Lewis basicity

imparted by the electron-withdrawing group. Thus, phosphinegold(I) 4-nitrobenzoate catalysts, which could be isolated and stored, provided high yields and enantioselectivities for a variety of pyrrolidine and piperidine products (14 examples, 81–99% ee) (entry 5).

Later, while examining the potential of chiral counterions in asymmetric Au catalysis, Toste revisited the allene hydroamination.⁵⁶ With dppm as the ligand on Au(I) and a chiral phosphoric acid counterion, **65**, high ee's could be obtained, demonstrating a second strategy for the highly enantioselective synthesis of azacycles.

Widenhoefer reported the analogous reaction with Cbz-protected amines as the nucleophiles. Dicationic chiral bisphosphine digold complexes were used with ClO₄ as the counterion. High enantioselectivities (>80% ee) were obtained in four cases using DTBM-OMe-Biphep (62) as the ligand. Furthermore, the reaction was demonstrated to proceed with a substrate scope complementary to that reported by Toste, since the protecting group on nitrogen differs (Cbz vs Ts). Additionally, the DTBM-OMe-Biphep-(AuCl)₂/AgClO₄-catalyzed reaction was optimized for terminally unsubstituted allenes, which were not previously reported. Some dependence of the enantioselectivity on the counterion was observed, but neither coordinating nor chiral counterions were investigated, rendering a direct comparison to the Toste systems impossible.

Widenhoefer subsequently applied his catalyst system to the dynamic kinetic resolution of trisubstituted γ -amino allenes (Scheme 10). This investigation is a striking exploitation of the Au-catalyzed allene racemization previously observed by Toste^{47c} and Krause,⁵¹ which enables the dynamic resolution. As in previous work, Widenhoefer employed DTBM-OMe-Biphep (**62**) as the chiral ligand. Overall, high diastereoselectivities and moderate rate differences in the reaction of each enantiomer of the starting allene were observed.⁶⁵ Based on the absolute configurations of the cyclic products, the stereochemical outcome of the cyclization appears to be under catalyst control. Regardless of the stereochemistry of the allene **81**, products in the same enantiomeric series are obtained ((R,E)-**82** and (R,Z)-**82** as shown).

Table 17. Au-Catalyzed Hydroarylation Toward (-)-Rhazinilam

entry	% catalyst	dr	yield (%)
1	30 (MeCN) ₂ PdCl ₂	67:33	83
2	10 AuCl ₃	92:8	27
3	5 AuCl ₃ , 20 AgOTf	92:8	82
4	5 Ph ₃ PAuCl, 5 AgOTf	97:3	92

Table 18. Asymmetric Hydroarylation of Allenes

entry	ligand (L)	X	ee (%)
1	(S)-Binap (7)	OTf	32
2	(S)-xylyl-Binap (9)	OTf	42
3	(<i>S</i>)-MeO-Biphep (87)	OTf	48
4	(<i>S</i>)-MeO-Biphep (87)	BF_4	55
5	(S)-DTBM-MeO-Biphep (62)	BF_4	76

3.2.3. Carbon Nucleophiles to Allenes

The Au-catalyzed intramolecular hydroarylation of *N*-arylallenamines was investigated by Fujii and Ohno. ⁶⁶ Cationic phosphinegold(I) complexes were highly active catalysts for the transformation. The parent Ph₃PAuCl/AgOTf catalyst provided the dihydroquinoline product in 57% yield; marked improvement (98% yield) was observed with (*o*-biphenyl)(t-Bu)₂P as the ligand.

En route to an enantioselective synthesis of (-)-Rhazinilam, Nelson subjected diastereomerically enriched allene **83** to Au-catalysis in order to achieve intramolecular hydroarylation (Table 17). The desired tetrahydroindolizine **84** could be isolated in good yield.⁶⁷ High regioselectivity was observed for all of the catalysts tested, but reactivity and chirality transfer were sensitive to the precise catalyst. Although AuCl₃ provided the product in high d.r., only low yield was obtained (entry 2). Use of AuCl₃/AgOTf as the catalyst mixture dramatically improved reactivity (entry 3), and Ph₃PAuCl/AgOTf provided even higher yield and fidelity in the chirality transfer (92% yield, 97:3 d.r.) (entry 4).

Widenhoefer reported the enantioselective addition of indoles to pendant allenes with dicationic, axially chiral digold bisphosphine complexes. A significant effect of the counterion on enantioselectivity was observed in the cyclization of 85 to 86 for the weakly coordinating counterions screened (Table 18). Optimization of the ligand revealed that bulky aryl substituents on the phosphine were crucial to achieving high enantioselectivity regardless of the axially chiral structural motif used (Binap or Biphep). Further optimization of the solvent and temperature in the reaction

entry	PR_3	¹ H NMR yield (%)
1	PPh ₃	75
2	$P(4-OMe-Ph)_3$	70
3	$P(4-CF_3-Ph)_3$	23
4	PMe_2Ph	7
5	P(t-Bu) ₂ (o-biphenyl)	98

catalyzed by 2.5% DTBM-OMe-Biphep(AuCl)₂/5% AgBF₄ permitted 86 to be obtained in 88% yield and 92% ee.

3.3. To Alkenes

3.3.1. Heteroatomic Nucleophiles to Alkenes

Reports on the intermolecular addition of phenols, carboxylic acids, and amines to olefins with catalytic amounts of Au emerged in 2005.⁶⁹ A similar mode of reactivity was observed by Li in the annulation of phenols and dienes with AuCl₃/AgOTf.⁷⁰ Subsequently, investigations by Hartwig and He suggested that some of these additions may be catalyzed by Brønsted acid formed under the reaction conditions.⁷¹

In early 2006, Widenhoefer reported the intramolecular cyclization of alkenyl carbamates, such as 88, catalyzed by Au(I).⁷² The nature of the phosphine ligand in this process had a dramatic effect on conversion, with (o-biphenyl)(t-Bu)₂P emerging as the most advantageous (Table 19, entry 5). The poor yield of **89** obtained from cyclization of **88** with dimethylphenylphosphine relative to that with the biphenyl phosphine ligand implies that steric protection of the metal center enhances reaction efficiency (entry 4). Comparison of the yields of 89 obtained with triaryl phosphines bearing electron-donating (entry 2) and electronwithdrawing (entry 3) substituents further suggests that more electron-rich phosphines provide superior catalysts, a surprising notion considering the increased Lewis acidity that electron-deficient ligands should confer on the metal center.

Application of this catalyst system to the cyclization of alkenyl carboxamides further demonstrated the importance of the ligand, as a variety of N-acyl substrates could be cyclized in high yield, representing the first transition metalcatalyzed hydroamination with such nucleophiles. 73 Control experiments demonstrated that no conversion of the starting material occurred in the presence of TfOH.

The use of biphenyl based ligands on Au(I) allowed the hydroamination reaction to be conducted at $60 \,^{\circ}\text{C} - 80 \,^{\circ}\text{C}$ for the majority of substrates examined. In order to further reduce the required temperature, Widenhoefer sought a more active catalyst system through steric and electronic adjustment of the supporting ligand. This ultimately led to the employment of NHC ligands on Au(I).74 The benefits of this ligand modification are readily apparent in the cyclization of urea 90 with IPrAuCl/AgOTf, which occurred at room temperature as opposed to at 80 °C with the phosphinesupported catalyst. The isolated yield of pyrrolidine 91 was also slightly higher with the (IPr)Au(I) catalyst (Scheme 11).

Scheme 11

3.3.2. Carbon Nucleophiles to Alkenes

In 2004, Li reported the intermolecular addition of 1,3diketones to styrenes in the presence of catalytic AuCl₃ and a silver salt. 75 The reaction yield is dependent upon the silver salt used, and very low reactivity was exhibited by AuCl₃ in the absence of Ag. The authors propose a mechanism proceeding by formal insertion of Au into the methylene C-H bond of the nucleophile; activation of the olefin as an electrophile by Brønsted acid formed in situ also seems possible.

Che reported the intramolecular cyclization of alkenetethered β -ketoamide compounds catalyzed by Au(I) complexes. ⁷⁶ A variety of γ - and δ -lactams could successfully be accessed. Optimal yields were obtained with Au[P(t-Bu)₂(o-biphenyl)]Cl/AgOTf at 50 °C.

4. Cascade Reactions Initiated by Carbon Nucleophiles with π -Electrophiles

4.1. Hashmi Phenol Synthesis

In 2000, Hashmi reported the intramolecular cyclization of alkynyl furans to phenols with Au(III) chloride.⁷⁷ In the ensuing years, his group has dedicated immense effort to the understanding and extension of this Au-catalyzed arene synthesis. Despite the reaction's many successes, catalyst stability was a persistent concern, and likely a consequence of the ligand-free system. 78 To address this obstacle, Au(III) complexes 92, 93, 94, and 95 bearing pyridine-derived ligands were tested for catalytic activity in the cyclization reaction (Figure 2).⁷⁹

Turnover numbers approaching 1200, as opposed to between 20 and 50 for the chloride salt, were observed in the isomerization of furan 96 to phenol 97 (Scheme 12). Of the three carboxylate-containing ligands, acceptor-substituted species 94 provided the most reactive Au catalyst, consistent with the anticipated increase in electrophilicity of the metal center (Scheme 12).

Scheme 13

Scheme 14

Although an arene oxide had long been suspected as a key intermediate in the phenol synthesis, such a species was never observed in the AuCl₃-catalyzed reaction. Interestingly, when a catalytic quantity of pyridine alkoxide complex **98** was used, up to 80% of an equilibrium mixture of **99** and **100** was obtained (Scheme 13). Precisely why changing the nature of the catalyst allows for the detection of these sensitive intermediates is unclear; the ligated Au(III) complex somehow alters the reaction coordinate such that breakdown of compounds **99/100** is slow relative to their formation.

Though complexes in the plus three oxidation state were remarkably active catalysts for the intramolecular phenol synthesis, none were capable of promoting the intermolecular variant. When readdressing the activity of Au(I) complexes in 2006, Hashmi noted a significant effect of precatalyst structure on reactivity in the intermolecular reaction of 32 with 101.81 Typical mononuclear precatalysts, including (Et₃P)AuCl, (Ph₃P)AuCl, and (tht)AuCl (tht = tetrahydrothiophene), in combination with AgBF₄ failed to provide acceptable results. Dinuclear bisphosphine complexes, such as (dppm)(AuCl)₂, also resulted in inefficient cyclization. However, dinuclear catalysts containing a bridging chloride ligand were remarkably effective in promoting the formation of 102, albeit with competitive formation of 103 (Scheme 14). It was suggested that employing a dinuclear catalyst precursor provided a stable resting state, which allowed reversible entry into the catalytic cycle.

Scheme 15

Ph₃PAuCl/AgSbF₆

MeOH, rt, 85%
$$R_1 = R_2 = Me$$
(Toste)

AuCl₃, MeCN, rt, 89%
 $R_1 = R_4 = Me$, $R_2 = CH_2OH$
(Kozmin)

107, MeOH, rt, 98%
$$R_3 = OAc, R_5 = Me$$
(Gagosz)

108

107 = (2-(2,4,6-(i-Pr)₃-Ph)-Ph)(Cy)₂PAuNTf₂

Nuc

Via

 $R_3 = R_4 = R_5$
 $R_4 = R_5$
 $R_5 = R_5$
 $R_5 = R_5$
 $R_6 = R_5$
 $R_7 = R_8$

4.2. 1,5 Enynes

In 2004, Fürstner and Toste independently reported the cationic Au(I)-catalyzed cycloisomerization of 1,5-enynes to [3.1.0] bicyclic products. ⁸² Toste observed that AuCl₃ was less reactive than Ph₃PAuCl/AgOTf; attempts to generate a more active Au(III) catalyst by addition of a silver salt resulted in the formation of significant decomposition products. In the course of investigating a related cycloisomerization of 6-siloxy-1,5-enynes to form cyclohexadienes, Kozmin determined that AuCl could also catalyze the formation of [3.1.0] bicycles from 1,5-enynes. ⁸³

In his initial investigation, Toste observed that MeOH could serve as an external nucleophile to trap the proposed intermediate **109** and provide alkoxy-cyclization product **105**. Kozmin subsequently investigated the analogous intramolecular trapping by using substrates with tethered nucleophiles (i.e., **104**, $R_2 = CH_2OH$) to form compounds such as **106**. Shin recently extended this strategy to include intramolecular trapping by a carbonate (**104**, $R_3 = OBoc$). In the carbonate cyclization, Buchwald-type ligands provided superior catalyst reactivity compared to Ph_3P .

Gagosz observed yet another class of cycloisomerization/ nucleophilic addition products. When 1,1-disubstituted 1,5-enynes were subjected to cationic Au(I), alkoxy cyclization products such as **108** were formed, presumably via a change in the regioselectivity for intermolecular trapping of **109** (Scheme 15). The change in regioselectivity was apparently substrate-controlled; the site best able to stabilize carbocationic character was attacked by the nucleophile. A further element of control was provided by the ligand. Gagosz observed that the use of Ph₃PAuNTf₂ provided a mixture of the desired alkoxy-cyclization product and products arising from direct alkoxylation of the alkyne, while sterically encumbered Buchwald ligand **107** provided the desired product in high yield and selectivity.

Kirsch investigated the reaction of 3-siloxy-1,5-enyes with Au catalysts, finding that the cationic intermediate generated via initial cyclization of the olefin onto the alkyne may be trapped by intramolecular Pinacol shift.⁸⁷ The active catalyst

Table 20. Au-Catalyzed Propargyl Claisen Reaction

entry	catalyst	111:112	ee (111) (%)	yield (111) (%)
1	Ph ₃ PAuCl/AgOTf	1.7:1	82	44
2	Ph ₃ PAuCl/AgBF ₄	20:1	4	85
3	$[(Ph_3PAu)_3O]BF_4$	20:1	90	91

was generated, as usual, by halide abstraction from Ph₃PAuCl with AgSbF₆. In testament to the mild reaction conditions proffered by cationic Au(I) catalysts, excess Au was needed to ensure that no soluble Ag species remained in the reaction solution; both the starting material and products were decomposed in the presence of Ag⁺.

A number of 1,5-enynes containing heteroatoms have been investigated with Au catalysts. Substrates bearing an oxygen tether at the 4-position underwent a formal [3,3] isomerization.⁸⁸ This propargyl Claisen rearrangement, as reported by Toste, demonstrated two separate selectivities that needed optimization: discriminating between [1,3] and [3,3] isomerization of 110 and maintaining chiral information during the [3,3] rearrangement of enantioenriched 110 (Table 20). Trinuclear complex [(Ph₃PAu)₃O]BF₄ provided 111 in high yield and with excellent conservation of stereochemical information (entry 3). Further experiments demonstrated that Au-catalyzed racemization of the product allene was likely responsible for the poor chirality transfer observed with mononuclear phosphinegold(I) catalysts (entries 1 and 2). The precise nature of the active catalytic species remains unclear, but precatalytic assemblies such as the trinuclear complex employed may offer further potential for tuning the properties of Au catalysts. A similar system employing modified substrates was later investigated by Kirsch in a tandem propargyl Claisen/allenone cycloisomerization to produce furans.

1,5-enynes bearing silicon tethers have also been studied. The cationic Au(I)-catalyzed cycloisomerization/alkoxylation of allyl vinyl silanes was investigated independently by Lee and Toste. 90 Depending on the external nucleophile, different regioselectivity for trapping was observed; methanol trapped at the carbocation generated from 6-endo-dig cyclization of the olefin onto the alkyne, while phenol trapped at the silyl cation generated subsequent to β -silvl fragmentation. A substantial rate acceleration was attained through use of (t-Bu)₃PAuCl rather than Ph₃PAuCl as the precatalyst.

4.3. 1,6 Enynes

In 2004, Echavarren reported the cycloisomerization and methoxycyclization of 1,6-enynes catalyzed by phosphinegold(I) complexes (Scheme 16). 91 Depending on the reaction conditions, either skeletally rearranged product 114 or methanol-trapped product 115 could be isolated in high yield from the reaction of 113. Tricyclohexylphosphine could be used as an additive in the alkoxycyclization without an adverse effect on the reactivity, as exemplified in the conversion of enyne 116 to cyclopentane 117 (Scheme 17).

Scheme 16

Scheme 17

Table 21. Biphenyl Phosphine Ligands in the Reaction of 113

entry	ligand (L)	time (h)	yield (%)
1	PPh ₃	3	84
2	$P(o-tol)_3$	24	90
3	$P(1-naphthyl)_3$	18	76
4	$P(Cy)_2(o-biphenyl)$	0.5	97

Conversely, addition of triphenylphosphine or bisphosphines such as dppm greatly retarded the reaction rate, presumably due to catalyst inhibition. A staggering diversity of Aucatalyzed skeletal rearrangements have subsequently been discovered for variously substituted and tethered 1,6 enynes, with the product distribution generally being substrate, rather than catalyst, dependent.

In 2005 Echavarren reported on the benefits of biphenyl based ligands in the Au(I)-catalyzed methoxycyclization of enynes. 92 Good yields of 115 could be obtained from 113 with a variety of triaryl phosphine ligands (Table 21). Tri(otolyl)phosphine provided higher yield than Ph₃P (entry 2). Buchwald-type ligand (o-biphenyl)(Cy)₂P provided nearly quantitative yield of 115 in significantly shortened reaction time (entry 4).

Yoshifuji reported that phosphaalkeneAu(I) chloride complexes 118, 119, and 120 catalyze the 1,6-enyne cycloisomerization even in the absence of a halide abstraction agent (Scheme 18).⁹³ The complexes could be recovered and reused. The authors speculate that the low-lying LUMO of the phosphorus-carbon double bond may increase the electrophilicity of the formally neutral Au center, presumably via increased backbonding from Au into the ligand.

Subsequently, 1,6-enynes have been extensively studied as model substrates for demonstrating alternative modes of reactivity available in Au-catalyzed reaction manifolds. Thus, compound 121 was prepared in order to provide pendant functionality for the trapping of proposed intermediate 122 (Scheme 19). Cationic acetonitrile complexes, including the parent triphenylphosphine complex, were ultimately utilized

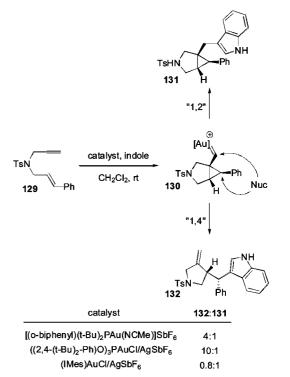
Scheme 19

as catalysts for a biscyclopropanation process initiated by 1,6-enyne cyclization. ⁹⁴ Such acetonitrile complexes may be isolated and stored as salts with noncoordinating anions (i.e., BF₄), thereby obviating the need for a silver cocatalyst and *in situ* catalyst generation. ⁴⁰ Replacing the tethered olefin with a carbonyl moiety or a 1-cyclopropan-2-ol group resulted in Prins or Pinacol-type trapping, respectively. ⁹⁵

Intermolecular trapping of the proposed cyclopropyl carbenoid intermediate (i.e., 122) with olefins has also been investigated. Echavarren found that PPh₃ (Table 22, entry 1) and a biphenyl phosphine (entry 2) exhibited only modest selectivity in differentiating between skeletal rearrangement and intermolecular cyclopropanation pathways. A phosphite ligand was similarly unselective, providing 40% yield of 125 and 52% yield of rearrangement products 126 and 127 from 124 (entry 3). In contrast, intermolecular cyclopropanation with norbornylene was the dominant pathway when NHC ligand IMes was used (entry 4). Although the selectivity observed with IMes might suggest that steric effects are responsible for the product ratio, similarly high selectivity for 125 was also observed with "ligandless" AuCl (entry 5).

Subsequently, Toste explored the oxidation of Au carbenoid intermediates, and reported that 1,6-enynes readily participated in cycloisomerization/oxidation in the presence of diphenylsulfoxide, as exemplified by the transformation of **124** to **128** (Scheme 20).⁹⁷ As noted by Echavarren in the above cyclopropanation experiments, the highest selectivities for trapping with sulfoxide rather than skeletal rearrangement were obtained with bulky NHC ligands.

Further intermolecular trapping studies on 1,6-enynes were carried out with indoles as nucleophiles. ⁹⁸ In the case of **129**, regioisomeric products arising from trapping of the proposed metallocarbenoid were observed (Scheme 21). Rather than observing ligand-dependent competition between the nu-


Table 22. Intermolecular Cyclopropanation of 1,6-Enynes

124 Ph 2% catalyst + CH₂Cl₂, -50 °C to rt
$$Z = C(CO_2Me)$$
 Ph 125 Ph 127 Ph 127

entry	gold catalyst	125	126 + 127
1	[(Ph ₃ P)Au(NCMe)]SbF ₆		29% (1:1.2) ^a
2	$[((\textit{t-}Bu)_2(\textit{o-}biphenyl)P)Au(NCMe)]SbF_6$	34%	62% (1.1:1)
3	(ArO) ₃ PAuCl / AgSbF ₆ ^b		52% (1:1.6)
4	(IMes)AuCl / AgSbF ₆	93%	3% (>10:1)
5	AuCl	94%	0%
,	3 : 127 = (2,4-(t-Bu) ₂ -Ph)	N N	

Scheme 20

Scheme 21

cleophilic addition and skeletally rearranged products, Echavarren instead saw the competitive formation of constitutionally isomeric trapping products. Phosphine- and phosphite-based catalysts provided **131** from addition by indole to the metallocarbenoid in intermediate **130**, in analogy to a 1,2-addition, while the IMes ligand demonstrated increased

selectivity for 132, presumably formed from trapping remote to the carbenoid in 130, in analogy to a 1,4-addition.

Michelet and Genêt previously reported the 1,4-trapping of 1,6-enyne-derived metallocarbenoids with a variety of electron-rich arenes using Ph₃PAuCl/AgSbF₆. For substrates examined by both Michelet/Genêt with Ph₃PAuCl/AgSbF₆ and Echavarren with ((2,4-(*t*-Bu)₂-Ph)O)₃PAuCl/AgSbF₆, significant differences in product yield or selectivity are not evident, although the Echavarren system used much lower temperature (-50 °C vs 40 °C).

Helmchen similarly applied the Ph₃PAuCl/AgSbF₆ catalyst system to the intermolecular trapping of metallocarbenoid reaction intermediates with carbonyl compounds. 100 The substitution patterns on the substrates were crucial to successful trapping; only primary alkenes, such as in substrate 133, were tolerated, in contrast to those tested in the indole trapping experiments described above (Scheme 22). The carbonyl insertion reaction to provide 141 is particularly remarkable considering that, in the absence of benzaldehyde, 136 is the major product, which presumably arises via *endo* cyclization of 133 to intermediate 134. In contrast, compound 141 presumably forms via exo cyclization of 133 to cyclopropyl carbenoid 137, indicating that there is an additive effect on the regioisomeric outcome of the cyclization. Whether this effect arises due to a reversible initial cyclization of 133 or due to a reversal in the kinetic preference for formation of 134 or 137 remains unclear. Echavarren previously observed cyclopropanation of metallocarbenoid 138, suggesting that trapping of this intermediate is not additive-specific. 96

Scheme 23

$$\begin{array}{c} \text{Ph} & \text{Me} \\ \text{Me} & 1.6\% \ (R)\text{-tol-Binap}(\text{AuCl})_2 \\ \text{AgSF}_6 \ (2 \ \text{mol}\%), \ \text{MeOH, rt} \\ 52\% \ \textit{yield, 94\% ee} \\ \text{142} & \text{143} \\ \end{array}$$

Scheme 24

In 2005, Echavarren published an asymmetric variant of the methoxy cyclization of 1,6-enynes, representing the first reported Au-catalyzed enantioselective reaction since the seminal work of Hayashi/Ito 20 years prior. Despite synthesizing a variety of Au-complexes, with various supporting ligands (eleven were discussed in the report), Echavarren found a general asymmetric reaction to be elusive. Ultimately, tol-Binap was selected as the optimal ligand, although ferrocenyl ligands Josiphos and Walphos also provided promising levels of enantioselectivity (42% ee and 38% ee, respectively). Under optimized conditions, enyne 142 was converted to cyclopentane 143 with an impressive 94% ee, but the five additional examples did not proceed in greater than 55% ee (Scheme 23).

4.4. 1, n-Allenynes

In 2006, Aubert, Fensterbank, and Malacria jointly reported their studies on the cycloisomerization of 1,7-allenynes with electrophilic late transition metal catalysts. ¹⁰² Halide-containing complexes, including PtCl₄, NaAuCl₄, and AuCl, catalyzed the formation of fused [4.3.0] bicyclic product **145** from **144** (Scheme 24). Alternatively, conjugated triene product **146** was obtained as a mixture of olefin regioisomers upon reaction of **144** with cationic Au and Pt complexes lacking halides.

The authors proposed that the divergent product selectivities arise due to the viability of a mechanistic pathway proceeding by transient formation of HCl with chloride-containing catalysts. It should be noted that cationic phosphinegold(I) catalysts such as Ph₃PAuSbF₆ were generated from the corresponding gold chloride complex and AgSbF₆. Thus, if the presence or absence of halides is indeed responsible for the product distribution, this serves as a testament to the insolubility/spectator status of AgCl under the reaction conditions.

1,6-Allenynes have also been investigated as substrates for Au-catalyzed cycloisomerization. Liu found that AuCl

Au(III)L = (2-pyridine-carboxylato)AuCl₂

Scheme 26

$$\begin{array}{c} \text{MeO}_2\text{C} & \text{CO}_2\text{Me} \\ \text{R}_1 = \text{H}, \, \text{R}_2 = \text{Ph}, \\ \text{R}_3 = \text{CH}_3 & \text{R}_2 = \text{R}_3 = \text{H} \\ \text{150} & \text{MeO}_2\text{C} & \text{CO}_2\text{Me} \\ \text{MeO}_2\text{C} & \text{H} & \text{Ph} \\ \text{153} & \text{151} & \text{151} \\ \text{6\% AgBF}_4, \, \text{CH}_2\text{Cl}_2, \, \text{rt} \\ \text{92\% yield, 95\% ee} & \text{152} \\ & \text{5\% (R)-(xylylBINAP)(AuCl)}_2 \\ \text{15\% AgOTf, NO}_2\text{Me, -12 °C} \\ \text{83\% yield, 77\% ee} \\ \text{3.5:1 (151:152)} & \text{3.5:1 (151:152)} \end{array}$$

and AuCl₃ were unreactive, while cationic phosphinegold(I) complexes readily catalyzed a skeletal rearrangement. ¹⁰³

4.5. 1, n-Allenenes

Toste reported the cationic Au(I)-catalyzed synthesis of cyclopentadienes from vinyl allenes. ¹⁰⁴ Although Ph₃PAuCl/AgSbF₆ was an efficient catalyst system for most of the substrates examined, higher yields could be obtained in certain cases using (*t*-Bu)₃PAuCl/AgSbF₆. The alternate conditions were especially useful for substrates bearing protected alcohol and amine functionality.

Zhang investigated the cycloisomerization of 3,4-dihydroxyl-1,5-allenenes bearing different protecting groups on the alcohols (Scheme 25). The product selectivity was under substrate-control, and products of type **148** or **149** were formed depending upon the alcohol protecting groups employed. Use of 2-pyridine carboxylate as a ligand on Au(III) afforded higher yields of the desired products than AuCl₃, although those obtained with AuCl were comparable. Cationic phosphinegold(I) complexes were poor catalysts in these cases.

Enantioselective cycloisomerizations of 1,7-allenenes have recently been developed by Gagne and Toste (Scheme 26). Although the two groups investigated differently substituted allenenes leading to two different classes of products, similar catalyst systems were employed. The divergent behavior may be ascribed to the substitution patterns of the substrates, which determine the regioselectivity of the initial addition of the alkene to the allene by preferentially stabilizing one possible cationic reaction intermediate over another. Bulky aryl substituents on the phosphines within chiral biaryl-based bisphosphine digold complexes provided the maximum ee's.

Gagne investigated allenes of type **150** possessing 1,1-disubstituted olefins ($R_1 \neq H$,) and terminally unsubstituted

Table 23. Isomerization of 1,6-Diyne 154

entry	catalyst	conditions	yield (%) (155:156)
1	2% Ph ₃ PAuCl/AgSbF ₆	CH ₂ Cl ₂ , 23 °C	93 (100:0)
2	5% Ph ₃ PAuCl/AgOTf	DCE, 50 °C	20 (90:10)
3	5% AuCl	toluene, 100 °C	17 (18:82)
4	5% AuCl ₃	toluene, 100 °C	29 (48:52)

allenes ($R_3 = H$), which isomerized to cyclohexenes such as **151/152**. ¹⁰⁶ These products were isolated as mixtures of olefin isomers. Using 3% (R)-xylyl-Binap(AuCl)₂/6% AgOTf as the catalyst, **150** could be converted to **151/152** in 77% ee as a 3.5:1 mixture. A general enantioselective reaction proved elusive; all of the other substrates examined provided lower ee's. Notably, the regioisomeric mixture obtained was somewhat dependent upon catalyst. Ratios ranging from 3.5:1 to 1:3 could be obtained depending upon the chiral phosphine employed.

Toste investigated allenes of type **150** possessing 1,2-disubstituted olefins ($R_1 = H$, $R_2 = aryl$) and terminally substituted allenes ($R_3 \neq H$). These substrates underwent formal [2 + 2] cycloadditions to form diastereomerically pure fused [3.2.0] bicycles. The reaction was rendered enantioselective through the employment of 3% (DTBM-Segphos)(AuCl)₂/6% AgBF₄. Product **153** could be obtained in 92% yield and 95% ee; other substrates bearing geminal diesters in the allenene backbone cyclized with similarly high enantioselectivities (6 examples, 92–97% ee). For reasons yet undetermined, replacing the diester with a sulfonamide linker resulted in sharply decreased ee.

4.6. 1,6-Diynes

Liu observed dramatic effects on reactivity and product selectivity in the [3+2] or [4+2] annulation of aryl-substituted 1,6-diynes depending on the catalyst (Table 23). The SbF₆ counterion proved most effective in attaining high yield of a single product, **155**, from **154** (entry 1). Conversely, experiments with other counterions (i.e., OTf⁻) and gold sources (AuCl, AuCl₃) resulted in the erosion or even reversal of product selectivity (entries 2–4).

5. Cascade Reactions Initiated by Heteroatom Nucleophiles with π -Electrophiles

In the cycloisomerization reactions reviewed above, the carbocation generated upon nucleophilic addition of one π -bond (alkene or allene) to another (alkene, allene, or alkyne) may be stabilized by backbonding from Au to form carbenoid intermediates or be quenched by other bond rearrangement processes. The following section covers transformations that are initiated by addition of a heteroatomic nucleophile to a Au-activated electrophile. The resulting cationic intermediates are proposed to undergo further rearrangements, rather than simple proton transfer as exemplified by the reactions covered earlier in this review (section 3). The subdivisions of this section are organized according to the fate of the initially formed cation.

t-BuO
$$\longrightarrow$$
 1% R₃PAuNTf₂ \longrightarrow CH₃ \longrightarrow CH₃ \longrightarrow R = Ph, no reaction 4-CF₃-Ph, 62% yield

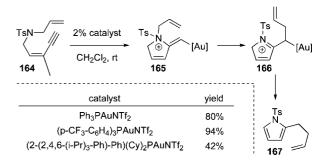
Scheme 28

5.1. Bond Scission

5.1.1. Carbocationic Leaving Groups

5.1.1.1. Carbonyl Nucleophiles. Gagosz investigated the cyclization of propargyl tert-butyl carbonates to 4-alkylidene-1,3-dioxolan-2-ones using phosphinegoldtriflimide complexes. 110 The cation intially formed by cyclization of the carbonate onto the alkyne is quenched by loss of tert-butyl cation. Although Ph₃PAuNTf₂ smoothly catalyzed the cyclization of several substrates, propargyl esters containing electron-rich internal alkynes, such as 157, were inert under the initially developed conditions (Scheme 27). The use of an electron-withdrawing ligand provided a more reactive catalyst, (4-CF₃-Ph)₃PAuNTf₂, for the cyclization of these problem substrates, presumably due to the increased Lewis acidity of the metal center. For these substrates, the expected cyclization product was not obtained; instead, a further rearrangement occurred, as exemplified by the transformation of 157 to 158.

An analogous 6-*exo*-dig cyclization of homopropargyl carbonates catalyzed by cationic Au(I) was reported by Shin. ¹¹¹ Carretero, Gagosz, and Shin changed the heteroatom linker, using *N*-Boc propargyl amines rather than carbonates, and found cationic Au(I) complexes to be superior to simple Au salts. ¹¹²


Bäckvall studied the intramolecular hydrocarboxylation of allenes, finding that methyl esters may serve as nucleophiles in such transformations (Scheme 28). The yield of 160 obtained from 159 with catalytic AuCl₃ could be augmented by the addition of AgOTf as an additive, and similar yield could be obtained with AuCl/AgOTf without the need for superstoichiometric silver relative to Au.

Shin studied additive effects in the Au(III)-catalyzed cyclization of allenyl *tert*-butyl carbonates. ¹¹⁴ While addition of Ph₃P completely shut down the catalytic activity of AuCl₃, perfluorinated phosphine P(C₆F₅)₃ or triethoxyphosphite were tolerated in cocatalytic quantities. Although the role of the phosphine is unclear, this is a notable rare example of a Au(III)/phosphine catalyst system.

5.1.1.2. *o***-Alkynyl Benzylic Ethers.** In 2006, Toste reported the intramolecular carboalkoxylation of alkynes to form indenyl ethers, which proceeds by cyclization of the ether onto the alkyne, C—O bond scission to generate a benzylic carbocation, and finally trapping of the cation by the vinyl Au moiety (Scheme 29). The reaction is

Scheme 29

Scheme 30

stereospecific; enantioenriched benzylic ethers transfer stereochemical information to the newly formed tertiary carbon stereocenter. The reactivity was highly dependent upon both the counterion and ligand present; an electron-deficient phosphine in conjunction with AgBF₄ proved optimal. Highest yields of the methyl enol ether 162 were obtained from 161 upon addition of molecular sieves, which were proposed to inhibit hydrolytic deprotection of the methyl enol ether and formation of 163.

5.1.1.3. Allyl transfer. Recently, Gagosz reported a pyrrole synthesis that proceeds by initial intramolecular cyclization of a trisubstituted nitrogen to generate a reactive ammonium species. ¹¹⁶ In this chemistry, upon cyclization of the allyl substituted amine onto the pendant alkyne in **164**, the resulting 1,5-diene **165** undergoes an aza-Claisen rearrangement en route to the corresponding 2-substituted pyrrole **167** (Scheme 30). Regiospecific crotyl transfer and lack of crossover between double-labeled substrates were observed, consistent with intramolecular shift of the allyl-substituent via a concerted [3,3]-rearrangement. Relative to Au(I) complexes with PPh₃ and Buchwald-type ligands, $(4-CF_3-C_6H_4)_3$ PAuCl provided superior reactivity and selectivity. A similar furan synthesis was recently disclosed. ¹¹⁷

5.1.2. Cationic Heteroatomic Leaving Groups

5.1.2.1. Homopropargyl Azides. An early investigation into the potential for Au(I) species to serve as a "pull-push" catalyst, to first activate an electrophile by withdrawing electron density and then stabilize the resulting cation by backbonding, was based on the hypothesis shown in Scheme 31, wherein a nucleophile tethered to a leaving group would add to Au-activated alkyne **168**. Loss of the leaving group from **169** would generate Au-stabilized cationic intermediate **170**.

The acetylenic Schmidt reaction was reported by Toste in 2005.¹¹⁸ In order to execute this process in an efficient manner, a dinuclear Au bisphosphine catalyst was required (Table 24). Bisphosphine digold catalysts provided optimal

$$\begin{array}{c} LG \\ Nu \\ \\ \oplus \\ LAu \end{array} \begin{array}{c} LG \\ Nu \\ \\ 168 \end{array} \begin{array}{c} -LG^{\ominus} \\ \\ AuL \end{array} \begin{array}{c} Nu \\ \\ AuL \end{array}$$

Table 24. Acetylenic Schmidt Reaction

$$N_{2}^{0}$$
 $n\text{-Bu}$
 N_{2}^{0}
 $n\text{-Bu}$
 N_{2}^{0}
 $n\text{-Bu}$
 N_{2}^{0}
 $n\text{-Bu}$
 N_{2}^{0}
 $n\text{-Bu}$
 $n\text{-Bu}$
 $n\text{-Bu}$
 $n\text{-Bu}$
 $n\text{-Bu}$
 $n\text{-Bu}$
 $n\text{-Bu}$

entry	gold catalyst (mol%)	yield 171 (%)	yield 172 (%)
1	(Ph ₃ P)AuCl (5)	9	72
2	$[(4-OMe-Ph)_3P]AuCl(5)$	23	58
3	$[(4-CF_3-Ph)_3P]AuCl (5)$	42	51
4	$(dppm)(AuCl)_2$ (2.5)	0	93
5	$(dppp)(AuCl)_2$ (2.5)	0	86

Scheme 32

yield of pyrrole **172** from homopropargyl azide **171**, apparently due to increased turn-over numbers (entries 4 and 5). The origin of this benefit remains obscure; it may be due to longer catalyst lifetime owing to stabilizing aurophilic interactions. ¹¹⁹

The proposed carbenoid intermediate formed after loss of N_2 could be trapped with diphenylsulfoxide. ^{97a} Substrates bearing hydrogen substituents at the propargyl position rapidly formed the pyrrole products even in the presence of sulfoxide. In order to slow the rate of pyrrole formation, gemdimethyl substituted substrate 173 was synthesized, since the [1,2] alkyl shift to form 176 should be slower than [1,2] hydrogen shift (Scheme 32). Even so, it was necessary to optimize the catalyst to slow the rate of alkyl shift relative to oxidation. With a bulky NHC ligand, the desired pyrrolone 175 was the predominant product.

5.1.2.2. Alkyne-Tethered Sulfoxides. In early 2007, Toste demonstrated that homopropargyl sulfoxides undergo a series of Au-catalyzed cycloisomerization reactions, which afforded benzothiepinones or benzothiepines depending on the alkyne substituent. ¹²⁰ As was observed in certain enyne cycloisomerization reactions, *N*-heterocyclic carbene ligands provided superior catalysts relative to phosphine-stabilized

Scheme 33

Scheme 34

systems for the isomerization of **177** to **179** (Scheme 33). Zhang studied the same reaction and found that dichloro-(pyridine-2-carboxylato)Au(III) also catalyzed the annulation in good yield. ¹²¹ Zhang extended the methodology to replace the final annulation step with a Pinacol-type ring-expansion to trap the Au-carbenoid intermediate, again finding that (NHC)Au(I) complexes were optimal catalysts.

Toste similarly investigated propargyl sulfoxides, and divergent product selectivity was observed depending on the catalytic Au source used (Scheme 34). While cationic Au(I) catalysts yielded complex product mixtures from 180, (DMS)AuCl (DMS = dimethylsulfide) provided 181 in high yield. Alternatively, catalytic AuCl provided the dimerization product 182 in high yield along with the corresponding disulfide. The reason for the diametric selectivity remains unclear; Malacria has previously proposed that the active catalysts formed *in situ* from AuCl are actually Au(III) species, and perhaps these demonstrate different activity than Au(I) catalysts. ¹⁰² The drastically different reaction concentrations also cannot be ignored.

5.2. Addition of Nucleophiles

5.2.1. Addition of Nucleophiles to o-Alkynyl Benzaldehydes

o-Alkynyl benzaldehydes have been extensively investigated for their reactivity with Au catalysts, as the formation of benzopyrylium species by intramolecular addition of the aldehyde to the alkyne provides a highly reactive intermediate for subsequent intra- or intermolecular trapping. In 2002, Yamamoto and Asao reported the Au(III)-catalyzed intermolecular [4 + 2] annulation of o-alkynyl benzaldehydes and alkynes (Scheme 35). 122 Substituted naphthalenes were synthesized in good yield with AuCl₃ and AuBr₃, although the authors reported slightly improved yields and faster reaction times with AuBr₃, as observed in the conversion of **183** to **184**. ¹²³ By tethering an alkyne to *o*-alkynyl benzaldehyde, Oh developed an intramolecular variant on this reaction that undergoes [3 + 2] rather than [4 + 2]annulation. The authors propose that strain in the transition state of the cycloaddition dictates the product selectivity. In

Table 25. Au-Catalyzed Isochromene Synthesis

entry	catalyst	conditions	yield (%)
1	Cy ₃ PAuCl/AgOTf	H ₂ O, 80 °C	trace
2	Cy ₃ PAuCl	H ₂ O, 80 °C	0
3	Ph ₃ PAuCl	H ₂ O, 80 °C	11
4	Me ₃ PAuCl	H ₂ O, 80 °C	44
5	Me ₃ PAuCl	toluene, 70 °C	nr
6	Me ₃ PAuCl	H ₂ O/toluene (1:1), 70 °C	87

Scheme 36

this case, AuBr₃ again was found to more efficiently catalyze the reaction than AuCl₃.

In 2006, Li reported the synthesis of 1-alkynyl-1Hisochromenes by reaction of o-alkynyl benzaldehydes with terminal alkynes (Table 25). 124 The reaction was carried out in H₂O/toluene with catalytic phosphinegold(I) chloride catalysts, without need to abstract the chloride with a cocatalyst. Notably, the same substrates (183 and 32) that underwent Yamamoto's formal [4 + 2] cycloaddition, as described above, were diverted down an alternative reaction pathway to **185** by Li's conditions.

Iwasawa reversed the connectivity on the aldehyde moiety, using N-(2-alkynyl-phenyl)-aldimines as precursors for azomethine ylides and subsequent cycloadditions with electronrich alkenes. 125 AuBr₃ was a superior catalyst relative to Au(I) complexes. Li investigated the annulation of salicylaldehyde 186 and 32 to produce isoflavanone 187, and found catalytic AuCN/PBu₃ in toluene at 150 °C to be the optimal reaction conditions (Scheme 36). 126 The regioisomer of the product obtained is opposite to that expected for a process initiated by intermolecular hydroalkoxylation of 32 by 186, leading the authors to propose an unusual Au-mediated activation of the aldehydic C-H bond. Mechanistic alternatives include an unanticipated reversal in the regioselectivity of the hydroalkoxylation for the particular substrates/conditions examined or a reaction proceeding via initial nucleophilic addition of the aldehyde to the alkyne, oxa-6- π electrocyclization, and isomerization to 187.

Scheme 37

5.2.2. Addition of Nucleophiles to Other Oxocarbenium Species

Kirsch incorporated an alkyl [1,2]-Pinacol-type shift into a tandem process involving cyclization/migration to synthesize 3-(2H)-furanones (Scheme 37). Carbocycles and simple alkyl substituents readily underwent the [1,2]-shift. Both Au(I) and Au(III) sources were examined as possible catalysts, and AuCl₃ readily catalyzed the reaction of **188** to **189**, via proposed intermediate **190**, in high yield. Alternatively, only decomposition products were observed in the reaction of 188 with catalytic Ph₃PAuCl/AgBF₄. A similar strategy relying upon strain-release ring-expansion rather than the Pinacol shift to trap the oxonium intermediate was disclosed by Schmalz, who found that cationic Au(I) catalysts actually offered superior reaction rates and yields compared with those of neutral Au halides. 128

Shi investigated the reactivity of epoxides tethered to alkynes, and products arising from initial attack of the epoxide oxygen onto the alkyne followed by intermolecular epoxide ring-opening with oxygen nucleophiles were obtained. 129 For a model substrate, the yield of the reaction showed a pronounced counterion effect; Ph₃PAuCl/AgOTf provided 25% yield of the desired product while switching to AgSbF₆ raised the yield to 68%.

5.3. Migration of Propargyl (and Other) Esters

5.3.1. [2,3]-Migration of Propargyl Esters

In 1984, Rautenstrauch first demonstrated the generation and intramolecular trapping of intermediates with carbenelike behavior from propargyl esters using a palladium(II) catalyst. 130 In 2005, Toste reported a Au(I)-catalyzed version of the Rautenstrauch rearrangement. 131 Stereochemical information from enantioenriched 3-acetoxy-1,4-enynes was conserved in the resulting cyclopentenones, an observation inconsistent with formation of a full metallocarbenoid intermediate. 132 It was necessary to optimize the counterion and temperature to obtain high fidelity in the chirality transfer reaction. Although AgOTf with Au(I) efficiently catalyzed the cycloisomerization of racemic substrates in high yield, AgSbF₆ was superior for the synthesis of enantioenriched substituted cyclopentenones.

Fürstner had previously studied the cycloisomerization of 5-acetoxy-1,6-enynes, as opposed to the 3-acetoxy-1,4enynes studied by Rautenstrauch and Toste, with Au and Pt halides. 133 He also reported a single example of the cycloisomerization of a 4-acetoxy-1,5-envne catalyzed by Ph₃PAuCl/ AgSbF₆. 82a In 2006, Nolan investigated similar substrates with cationic Au(I) complexes bearing NHC and phosphine ligands. 134 By tethering two alkenes within substrate 191, Nolan studied the intramolecular competition between [3.1.0] and [4.1.0] bicycle formation (Table 26).

Table 26. Cycloisomerization of Acetoxy 1,n-Enynes

entry	L	X	192 (yield %)	193 (yield %)	194 (yield %)
1	Ph ₃ P	BF_4	50	2	12
2	IMes	BF_4	26	12	40
3	IPr	BF_4	30	12	42
4	IPr	OTf	63	13	0

Scheme 38

Me Me
$$R = Ph$$
, $h = 1$ $R = Ph$, $h = 1$ $R = 1$

Surprisingly, two regioisomeric [3.1.0] products, **193** and **194**, were observed with (IPr)AuCl/AgBF₄ (entry 2). Although products similar to **193** had been previously observed by Fürstner, **194** was the major product in this case. The product distribution varied depending on the ligand employed; triphenylphosphine provided the [4.1.0] bicycle **192** somewhat selectively (entry 1). When AgOTf, rather than AgBF₄, was used as the halide abstraction reagent with (IPr)AuCl, the selectivity inverted, and the [4.1.0] pathway dominated (entry 4). In all of the cycloisomerizations of acetoxy-enynes, it is difficult to differentiate between mechanisms initiated by carbocyclization as opposed to those initiated by propargyl ester migration.

Ohe and Uemura reported that metallocarbenoids generated from [2,3]-rearrangement of propargyl esters undergo intermolecular cyclopropanation with olefins. 135 Ruthenium complexes were optimal catalysts, though Au(III) chloride was also examined. In November of 2005, Toste reported a Au(I)-catalyzed variant of the Ohe-Uemura cyclopropanation in which ligand effects were manifest in the diastereoselectivity of the transformation of 195 to 196 (Scheme 38). Given the high steric bulk of (t-Bu)₃P and the observation that phenyl propargyl pivaloate 197 provided the product cis-200 as a single olefin isomer, a stereochemical model accounting for the observed diastereoselectivity was proposed. Cyclopropanation is proposed to occur via the less sterically encumbered Au carbenoid 198 to provide the Z-olefin isomer, while the transition state *cis*-**199** is favored over trans-199 due to steric clash between the ligand on Au and the substituent on the incoming olefin (Scheme 39).

The diastereoselective cyclopropanation was extended to an asymmetric variant using chiral phosphine ligands on Au. Bisphosphine digold catalysts afforded the desired product with good enantioselectivity, while MOPAuCl, a mononuclear monophosphine complex bearing a similar axially chiral backbone, resulted in very low enantioselectivity. Ultimately, bulky aryl substituents on the phosphines were

Scheme 39

Scheme 40

Scheme 41

found to induce greater ee, with the catalyst formed from (R)-DTBM-Segphos(AuCl)₂ and AgSbF₆ proving optimal (Scheme 40). Enantioselectivities ranging from 76% to 94% for a series of eight cyclopropanes of type **201** were obtained.

Further investigations into the intermediate formed by [2,3]-rearrangement of propargyl esters with Au were carried out by Toste in 2007. The was found that the proposed metallocarbenoid could be trapped by nucleophilic oxidants, specifically diphenyl sulfoxide. When pivaloate ester **197** was treated with cationic Au(I), diastereomeric ratios of complex **202** between 3:1 for the triphenylphosphine complex and 99:1 for the IPr complex were observed (Scheme 41). The *E*:*Z* ratio for the resulting olefin appears to be under kinetic control, based on the observed failure of the *Z* isomer to isomerize under the reaction conditions.

Echavarren explored the trapping of the proposed metallocarbenoid intermediate **198** with carbon nucleophiles. ¹³⁷ When 1,3-diphenyl-1,3-propanedione was reacted with phenyl propargyl acetate, a catalyst-dependent mixture of the carbenoid-trapping product and the propargyl substitution product was obtained. ¹³⁸ Consistant with the hypothesis that bulky ligands inhibit intramolecular bond reorganization relative to intermolecular trapping, NHC-supported catalyst IMesAuCl/AgSbF₆ provided a mixture of products. In

Table 27. Au-Catalyzed Enedione Synthesis

entry	catalyst	time	¹ H NMR yield (<i>E:Z</i>)
1	AuCl ₃	0.25 h	>99% (1:1.6)
2	(py)AuCl ₃	12 h	84% (1:2)
3	CI-AU-O 93 CI	1.5 h	>99% (7:2) ^a

^a Isolated yield.

contrast, AuCl or phosphine-ligated complexes provided exclusively the desired product arising from trapping subsequent to the [2,3]-rearrangement.

In 2006, Toste investigated carbenoid intermediates derived from 1-acetoxy-2,4-pentadiynyl substrates. Notably, although two regioisomeric metallocarbenoids could conceivably be formed, only a single cyclopropanation product was obtained in all cases examined. A tandem cyclopropanation/hydroarylation process leading to benzonorcaradiene products was described. Although the initial cyclopropanation could be catalyzed by Au(I) and Au(III) complexes, only cationic phosphinegold(I) complexes efficiently catalyzed the one-pot tandem process.

5.3.2. [3,3]-Migration of Propargyl Esters

Ligand effects on olefin geometry were observed by Zhang in the reaction of **203** to **204** (Table 27). The reaction mechanism is proposed to be initiated by [3,3]-rearrangement of **203**. ¹⁴⁰ Use of 2-pyridinecarboxylate as the ligand on Au(III) resulted in significant enrichment of the *E* olefin isomer, in contrast to AuCl₃. Further studies on other substrates showed the *E*:*Z* ratio was not constant throughout the reaction, making it unclear whether the ligand effect results from increased kinetic preference for formation of one olefin isomer, or a change in the rate of olefin isomerization to form a thermodynamic product mixture.

In 2006, Nolan reported the Au-catalyzed formation of indenes from aryl propargyl esters. ¹⁴¹ When bulky (NH-C)Au(I) complexes were used in the reaction of **205**, a tandem process involving [3,3]-rearrangement/hydroarylation to produce **206** was preferred over direct hydroarylation to **207** (Table 28, entries 3 and 4). This contrasts the low selectivity observed when Ph₃PAuCl/AgBF₄ was employed as the catalyst (entry 1). Toste reported the synthesis of naphthyl ketones via a tandem [3,3]/Myers-Saito sequence from similar substrates bearing 2-alkynyl substitution on the aryl ring catalyzed by (*t*-Bu)₃PAuCl/AgSbF₆. ¹⁴²

Alkene nucleophiles can also be used to engage the allene intermediates stemming from [3,3]-rearrangement of propargyl acetates. Gagosz found that, in analogy to 1,5-enynes, *in situ* generated 1,5-allenenes underwent a cycloisomerization reaction to afford bicyclo[3.1.0]hexenes (Table 29). ¹⁴³ A bulky Buchwald-type ligand provided greater reactivity compared with other electron-rich or electron-deficient

Table 28. Au-Catalyzed Indene Synthesis

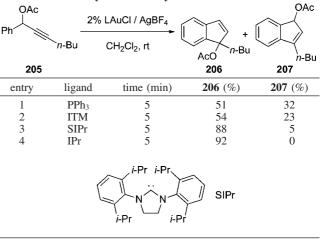


Table 29. Tandem [3,3]/Allenene Cycloisomerization

entry	ligand	time (h)	209 (%)/210 (%)
1	PPh ₃	6	41/49
2	$P(4-CF_3-Ph)_3$	6	53/32
3	$P(n-Bu)(Ad)_2$	6	21/78
4	$P(t-Bu)_2(o-biphenyl)$	1	0/98

phosphines, and nearly quantitative conversion of **208** to **210** occurred for the tandem process. With the other catalysts, significant quantitites of **209** were isolated. Gagosz also developed a tandem [3,3]/allenol cyclization strategy to produce dihydrofurans. 144

A similar strategy of generating allene functionality *in situ* was investigated by Shin for a tandem [3,3]/ring expansion reaction of *O*-acetylated propargyl cycloalkanols. Shin found that the ligand employed on the cationic Au(I) catalyst influenced the relative rates of [3,3]-isomerization vs direct ring expansion and of allene hydroalkoxylation vs ring expansion.

Building upon the tandem [3,3]-rearrangement/Nazarov cyclization of 5-acetoxy-1-penten-3-ynes reported by Zhang, ¹⁴⁶ Malacria reported that, in the reaction of **211**, the proposed metallocarbenoid intermediate **214** could be intercepted by a tethered alkene to provide cyclopropanation product **215** (Scheme 42). ¹⁴⁷ Cationic Au(I) complexes were more active catalysts for the reaction compared to AuCl₃, and use of PPh₃ as the ligand provided superior selectivity for **215** compared to a Buchwald-type ligand, which produced a substantial quantity of **216**. The choice of ligand apparently influences the rate of intramolecular cyclopropanation relative to [1,2]-H-shift.

5.3.3. Other Ester Migrations

5.3.3.1. Homopropargyl Acetates. As discussed so far in this section, the Au-induced rearrangement of propargyl acetates provides access to a diverse array of reaction pathways. An alternate pathway to the [3,3]- and [2,3]-migrations discussed so far was exploited by Zhang for the synthesis 1,4-cyclohexadienes by cycloisomerization of 3-acetoxy-1,5-enynes (Scheme 43). The reaction of **217** to **220** is initiated by 6-exo-dig cyclization of the ester onto the

Scheme 43

Table 30. [3,3] Rearrangement of Allenyl Acetates catalyst CH2Cl2, rt

entry	catalyst	conversion (%)	yield (%)	
1	2% AuBr ₃	< 5	0	
2	1% Ph ₃ PAuNTf ₂	15	6	
3	1% (2-(Ar)-Ph)(Cy) ₂ PAuNTf ₂ ^a	100	98	
a Ar = 2,4,6- $(i-Pr)_{3}$ -Ph				

222

alkyne to produce intermediate 218, rather than the typical 6-endo-dig addition. This is one of few examples where a vinyl Au intermediate (**219**) is proposed to react as a nucleophilic carbanion. Dichloro(pyridine-2-carboxylato)Au optimally catalyzed the reaction, which did not proceed in the presence of cationic Au(I) complexes.

5.3.3.2. Allenyl Acetates. The [3,3]-rearrangement of allenyl acetates has been investigated by Gagosz for the synthesis of 2-acetoxy-1,3-dienes (Table 30). 150 High selectivity for the E-olefin isomer was obtained, which was rationalized as a kinetic phenomenon. Gold(III) bromide was insufficiently reactive and did not catalyze the transformation (entry 1). The parent Ph₃PAuNTf₂ catalyst provided only 15% conversion of 221 to 222 in 24 h (entry 2), while use of a bulky biphenyl phosphine ligand resulted in full conversion to 222 after only 3 h (entry 3).

Scheme 44

Scheme 45

5.3.3.3. Allylic Acetates. Allylic acetates have also been investigated as substrates in a Au-catalyzed hetero-Claisen rearrangement. ¹⁵¹ Nolan reported the [3,3]-rearrangement of O-acetylated benzyl-allyl-alcohols to the corresponding styrenyl acetates with cationic NHC-ligated Au catalysts. The use of bulky NHC ligands was crucial in mitigating oligomerization and other decomposition pathways.

6. Oxidation Reactions

In contrast to the rich oxidation chemistry catalyzed by heterogeneous Au species, 1b,c oxidative transformations catalyzed by homogeneous Au catalysts have only been sparingly investigated. Initial work in this area dates to 1983, when Gasparrini reported the oxidation of sulfides to sulfoxides in the presence of catalytic Au(III) salts. 152

Recent advancements in catalytic oxidation chemistry were presaged by Cinellu, who found that bipyridine-ligated Au(III)-oxo complex 223 stoichiometrically reacted with norbornene to afford alkene complex 224, auraoxacyclobutane 225, and various oxidized organic products (Scheme 44). 153 Although stoichiometric, this work foreshadowed the utility of nitrogen donor ligands for catalytic homogeneous oxidation, and suggested that alkene oxidation might be possible.

6.1. Oxidation of Alcohols

In late 2005, Shi and co-workers reported the Au(I)catalyzed oxidation of primary and secondary alcohols, using molecular oxygen as the terminal oxidant (Scheme 45). 154 Striking success was attained when Au(I) chloride was used along with anionic 1,3-diimine ligand 228, affording 96% isolated yield of benzaldehyde (227) from benzyl alcohol (226) after 24 h. Data for the reaction catalyzed by other ligand—Au complexes were not reported, so it is not possible to draw any conclusion on the role of the ligand.

226

Table 31. Au-Catalyzed Oxidative Cleavage

entry	ligand	time (h)	yield (%)
1	_	24	< 10
2	pyridine	10	41
3	bipyridine	10	23
4	phenanthroline	10	16
5	neocuproine	2	93

Scheme 46

6.2. Oxidative Cleavage of Olefins

In early 2006, Shi reported the Au(I)-catalyzed oxidative cleavage of alkenes, using tert-butyl hydrogen peroxide as the stoichiometric oxidant. 155 As with the oxidation of alcohols discussed earlier, nitrogen donor ligands were used in the optimal reaction conditions (Table 31). The choice of ligand drastically influenced reactivity, with the highest reaction rate and conversion to 230 obtained with a neocuproine ligand (entry 5). In this reaction, as in the oxidation of 226, the precise mechanism and role of Au remain uncertain.

Despite the success of nitrogen donor ligands in recent reports of homogeneous Au-catalyzed oxidation, they are not required for oxidative behavior. Shortly after Shi reported the oxidative cleavage of alkenes, Liu described a tandem hydroalkoxylation/oxidative cleavage reaction of alkynols (Scheme 46). 156 The oxidative cleavage of 232 occurred in the presence of the familiar (Ph₃P)AuCl/AgOTf catalyst system to provide 233, illustrating that such reactivity is also accessible with phosphine-ligated Au complexes. Additionally, Toste has reported the oxidation of Au-carbenoid intermediates with sulfoxides in the presence of phosphineand NHC-supported catalysts. 97a Further details on the oxidation of various intermediates can be found elsewhere in this review (sections 4.3, 5.1.2.1, 5.3.1).

7. Reductive and Dehydrogenative Reactions

7.1. Hydroboration/Diboration

As with oxidative transformations, Au(I)-catalyzed reductive and dehydrogenative reactions remain rare. In 1995, Baker and Westcott described a series of three-coordinate Au(I) phosphine complexes and their application as catalysts for imine hydroboration. 157 A less sterically encumbered polymeric catalyst containing the diphenylphosphinoferrocene ligand demonstrated enhanced reaction rate, by at least a factor of 2, over the other catalysts examined for the reaction of 234 to 236 (Table 32).

Table 32. Imine Hydroboration

entry	catalyst	relative rate
1	none	1.0
2	(Et ₃ P)AuCl	2.0
3	(i-Pr) ₂	3.7
4	$(i-Pr)_2P-Au-P(i-Pr)_2 Cl$ $(-P(i-Pr)_2 (i-Pr)_2P-Au-)_n$	14.8
5	[AuCl(µ-DPPF)] _n	>40

90% yield

Very shortly after their report on imine hydroboration, Baker and Westcott described the diboration of vinylarenes catalyzed by an in situ generated three-coordinate Au(I) phosphine complex. 158 Neither triethylphosphine- nor triphenylphosphine-ligated Au catalysts affected the desired diboration reaction, but when dcpe (ethane-1,2-bis-diylbis-(dicyclohexylphosphine)) was added to a solution of triethylphosphinegold(I) chloride, an active catalyst mixture was obtained.

7.2. Silylation

Approximately 5 years after the original Baker/Westcott report, Hosomi reported a Au(I)-catalyzed hydrosilylation of aldehydes and ketones. 159 When a colorless DMF solution of benzaldehyde and triphenylphosphinegold(I) chloride was treated with dimethylphenylsilane, a rapid darkening of the reaction mixture to deep purple occurred, and a metallic precipitate was formed. Under these conditions, no carbonyl hydrosilylation product was obtained. Strikingly, when tributylphosphine was used as an additive, clean formation of the desired silyl ether was observed by ¹H NMR spectroscopy, and the solution remained colorless and homogeneous throughout the reaction (Scheme 47). This additive effect is reminiscent of that described in the diboration system in section 7.1. The reduction of 227 to 226 is particularly intriguing considering that the reverse reaction can also be catalyzed by Au under different conditions, as described in section 6.1. Stradiotto observed similar additive effects in studies on the hydrosilylation activity of Au catalysts supported by indenyl-phosphine ligands in the same reaction. 160 Low conversions were observed when 3% (3-i-Pr₂P-indene)Au(I) chloride was employed, but addition of substoichiometric quantities of the

Table 33. Reductive Silylation of 237

catalyst	GC yield (%)
(Me ₂ S)AuCl	11
dppe/(Me ₂ S)AuCl	0
dppf/(Me ₂ S)AuCl	11
(Ph ₃ P)AuCl	2
Xantphos/(Me ₂ S)AuCl	94
(Xantphos)AuCl	100
	(Me ₂ S)AuCl dppe/(Me ₂ S)AuCl dppf/(Me ₂ S)AuCl (Ph ₃ P)AuCl Xantphos/(Me ₂ S)AuCl

ligand as an additive permitted full conversion of benzaldehyde to the hydrosilylation product.

Horvath applied fluorous phase-soluble, recyclable Au(I) catalysts to the hydrosilylation reaction and suggested that the excess phosphine might serve as an organocatalyst to generate an electrophilic intermediate from the carbonyl substrate. Corma extended this mode of reactivity with Au-catalysts to include the hydrosilylation of styrenes with Au(I) and Au(III) precatalysts. In the absence of excess phosphine, Ph₃PAuCl was inactive as a catalyst, but replacing the phosphine with a more labile ligand (tetrahydrothiophene) restored reactivity. No information on the regioselectivity of the hydrosilylation (linear vs branched products) was provided.

An alternative use of silanes as reductants was developed by Ito and Sawamura, who reported the hydrogenative coupling of silanes and alcohols catalyzed by Au(I) (Table 33). ¹⁶³ When a three-coordinate (Xantphos)Au(I) chloride complex was employed, quantitative conversion to the desired silyl ether **238** from **237** was observed (entries 5 and 6). The source of the superior catalytic activity of Xantphos is unclear, but its unique reactivity suggests that geometrically constrained coordination environments might provide a means to tuning the activity and selectivity of Au catalysts.

7.3. Hydrogenation

In the spring of 2005, Corma and co-workers reported the first example of Au-catalyzed asymmetric carbon—hydrogen bond formation using a Duphos-ligated complex (Scheme 48). ¹⁶⁴ Despite containing data on only four substrates, with the enantioselectivities ranging from 20% to 95%, this paper stands out as a rare example of π -bond reduction using a purportedly homogeneous Au catalyst. ¹⁶⁵

Scheme 49

Scheme 50

8. Group Transfer Reactions

8.1. Diazo-Derived Carbene Transfer

The catalytic decomposition of α-diazoesters to metal—carbenes has a storied history with the group 11 elements. ¹⁶⁶ Up to 2004, however, homogeneous Au-catalyzed carbene transfer reactions of diazoesters were unknown. Nolan, Díaz-Requejo, and Pérez reported the first such process in the summer of 2005, using *N*-heterocyclic carbenes as stabilizing ligands. ¹⁶⁷ The ligand choice, in this instance, served to compare the Au-catalyzed transformation with a coppercatalyzed version reported one year earlier. ¹⁶⁸ As was observed in the copper system, diazo coupling was completely suppressed. Surprisingly, both cyclopropanation (242) and C–H insertion (243) products were observed in the reaction of 241 with styrene, as opposed to only cyclopropanation products as obtained from the Cu-catalyzed reaction (Scheme 49).

As carbene insertion into aryl carbon—hydrogen bonds rarely competes with alkene cyclopropanation in metal-catalyzed reactions of diazoesters, further investigation of the Au-catalyzed system was warranted. Removing the cyclopropanation pathway by employing benzene rather than styrene as the reactant, Nolan et al. observed a 3-to-1 mixture of C—H and C—C insertion products. Notably, the product selectivity using the IPr complex differed markedly to that observed with a terpyridine ligated Au catalyst, as reported by He (Scheme 50). The suppression of diazo-coupling with IPr was not observed with the *N*-donor ligand. Tempting

Table 34. Alkane C-H Insertion

entry	L	yield (%) (248:249)
1	IPr	85 (83:17)
2	IAd	74 (60:40)
3	I-t-Bu	61 (53:47)
4	IMes	25 (32:68)

as it is to attribute these results to a ligand-controlled phenomenon, the change in counterion and temperature cannot be ignored.

A clearer example of the ability to influence product selectivity through ligand modification was uncovered when the Nolan-Díaz-Requejo-Pérez catalyst system was applied to insertion of 241 into alkane C-H bonds (Table 34). 170 Dramatic differences in product selectivity in the formation of 248 and 249 were observed when a series of (NHC)Au(I) complexes were tested. With IPr, predominant functionalization of 1° C-H bonds was observed, while a diametric product distribution was exhibited by the IMessupported catalyst.

8.2. Nitrene Transfer

In addition to carbene transfer, Au-catalyzed nitrene transfer has also received attention. In 2006, He described the reaction of styrenes with an *in situ* generated iodinane. ¹⁶⁹ This process utilized a Au(I) catalyst and terpyridine supporting ligand. The Au(III)-mediated functionalization of benzylic C-H groups with nitrenes was recently reported by He. 171

9. Activation of Terminal Alkynes

9.1. With Carbonyl Electrophiles

Following up on an earlier report on Mannich-type threecomponent couplings, ¹⁷² Li found that α-oxyaldehydes, amines, and terminal alkynes react to produce propargyl amines in the presence of catalytic amounts of Au(I) complexes. 173 The reactions were run in water, and AuI was a more reactive catalyst than AuCl.

Che studied the three-component Mannich-type reaction of aldehydes, amines, and terminal alkynes. ¹⁷⁴ Salen Au(III) complexes were successfully employed as catalysts for the reaction, which could be run in aqueous medium. A Au(III)porphyrin complex was not a suitable catalyst. An enantioenriched analogue of artemisinin was synthesized through use of a proline-derived amine, which permitted the subsequent diastereoselective alkynylation of the in situ formed imine to provide stereodefined products. Che furthermore used the intermolecular hydroamination of alkynes with anilines as the basis for a tandem process leading to dihydroquinolines and quinolines, wherein the enamine formed from the initial intermolecular hydroamination tautomerizes to form an iminium electrophile, which is trapped by a second equivalent of alkyne en route to the products. 175

Figure 3.

Scheme 51

9.2. In Cross-Coupling Reactions

While attempting to better understand the heterogeneous Au-catalyzed cross-coupling of iodoarenes and terminal alkynes (Sonagashira-type reaction), Corma investigated the reactivity of Schiff-base Au(I) and Au(III) complexes 176 Intriguingly, the results were highly dependent upon the oxidation state of the homogeneous precatalyst employed. While the Au(I) complex 250 effectively catalyzed the formation of alkynyl benzenes, Au(III) complex 251 does not provide the same product, instead mediating alkyne homocoupling (Figure 3).¹⁷⁷ The Sonagashira-type heterocoupling of iodoarenes and alkynes could also be catalyzed by Ph₃PAuCl.

In 2007, Bertrand reported a Au-catalyzed variant of the Crabbe homologation, where enamines serve as carbene donors and react with terminal alkynes to provide allene cross-coupling products (Scheme 51). 178 Remarkably, only the cationic complex formed via chloride abstraction from a Au complex ligated by cyclic (alkyl)(amino)carbene ligand 256 provided the allene product 254 from 32 and 252. Other typical Au(I) catalysts overwhelmingly provided propargyl amine 255, likely via addition of a Au-acetylide to a transiently generated iminium species. Mechanistic experiments suggested that 254 did not form via the propargyl amine 255. The proposed mechanism for formation of 254 involves several steps and organometallic intermediates rarely invoked in Au catalysis, including oxidative addition of a Au-acetylide to a 252-derived iminium species, α -elimination to liberate 253 and generate a Au(carbene)(vinylidene) intermediate, and finally reductive elimination to form 254.

10. Conclusions

Although a great deal of empirical information is now available on means to control selectivity in homogeneous Au catalysis, the development of new catalysts and reactions continues to rely upon trial and error. Nonetheless, certain

ligand classes have emerged as privileged structures for Aumediated reactions. Some loose guidelines may be distilled from the available data:

- (a) For carbophilic activation with Au(I), the reactivity and selectivity of cationic Au(I) complexes may be tuned by switching the ligand. Biphenyl-substituted phosphines and NHC ligands have repeatedly been observed to induce greater reactivity and modulate selectivity among competing reaction pathways.
- (b) The stability of Au(III) catalysts may be greatly improved with *N*-donor ligands. In some cases, the reactivity of the Au(III) center may be attenuated. Such ligands have also been successfully employed with Au(I) precatalysts in oxidation and group transfer reactions.
- (c) Axially chiral, biaryl-based bisphosphine ligands with a 1:1 P:Au stoichiometry have been successfully employed in the development of new catalytic, asymmetric reactions. Chiral phosphoric acids are capable of inducing high levels of enantioselectivity in additions of nucleophiles to allenes.
- (d) Three-coordinate bisphosphine Au(I) chloride complexes are particularly effective for reduction and hydrogen atom transfer.

As Au-catalyzed reactions continue to emerge from laboratories worldwide, undoubtedly the area of ligand-controlled selectivity will be of paramount interest. Further understanding of active catalysts should allow for the development of models to predict and understand reaction outcomes, perhaps even leading to the rational design of new ligands.

11. Acknowledgments

We gratefully acknowledge NIHGMS (RO1 GM073932), Merck Research Laboratories, Bristol-Myers Squibb, Amgen Inc., Boehringer Ingelheim, and Novartis for funding. D.J.G. thanks Bristol Myers-Squibb for a predoctoral fellowship.

12. References

- (a) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. (b) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. (c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. For short highlights of broad advances in Au catalysis, see: (d) Hoffmann-Roder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (e) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2005, 44, 6990. (f) Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237.
- (2) (a) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. See also: (b) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. (c) Hashmi, A. S. K. Gold Bull. 2003, 36, 3.
- (3) (a) Zhang, L. M.; Sun, J. W.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. See also: (b) Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200. (c) Christian, B. Angew. Chem., Int. Ed. 2005, 44, 2328.
- (4) Nevado, C.; Echavarren, A. M. Synthesis 2005, 167.
- (5) Widenhoefer, R. A.; Han, X. Q. Eur. J. Org. Chem. 2006, 4555.
- (6) Patil, N. T.; Yamamoto, Y. Arkivoc 2007, 6.
- (7) Marion, N.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2750.
- (8) (a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. (b) Reference 2a. (c) Pyykkö, P. Angew. Chem., Int. Ed. 2004, 43, 4412. (d) Pyykkö, P. Inorg. Chim. Acta 2005, 358, 4113.
 (9) (a) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986,
- (9) (a) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405. (b) Hayashi, T.; Sawamura, M.; Ito, Y. Tetrahedron 1992, 48, 1999.
- (10) Sawamura, M.; Ito, Y. Chem. Rev. 1992, 92, 857.
- (11) (a) Sawamura, M.; Ito, Y.; Hayashi, T. Tetrahedron Lett. 1990, 31, 2723. (b) Togni, A.; Blumer, R. E.; Pregosin, P. S. Helv. Chim. Acta 1991, 74, 1533.
- (12) (a) Pastor, S. D.; Kesselring, R.; Togni, A. J. Organomet. Chem. 1992, 429, 415. (b) Sawamura, M.; Nakayama, Y.; Kato, T.; Ito, Y. J. Org. Chem. 1995, 60, 1727.
- (13) Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638.

- (14) For a review of biaryl-type bisphosphine ligands, see: Shimizu, H.; Nagasaki, I.; Saito, S. *Tetrahedron* 2005, 61, 5405.
- (15) Carvajal, M. A.; Novoa, J. J.; Alvarez, S. J. Am. Chem. Soc. 2004, 126, 1465.
- (16) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.
- (17) Lin, C. C.; Teng, T. M.; Odedra, A.; Liu, R. S. J. Am. Chem. Soc. 2007, 129, 3798.
- (18) (a) Ray, L.; Katiyar, V.; Raihan, M. J.; Nanavati, H.; Shaikh, M. M.; Ghosh, P. Eur. J. Inorg. Chem. 2006, 3724. (b) Ray, L.; Katiyar, V.; Barman, S.; Raihan, M. J.; Nanavati, H.; Shaikh, M. M.; Ghosh, P. J. Organomet. Chem. 2007, 692, 4259.
- (19) Xu, Q.; Imamura, Y.; Fujiwara, M.; Souma, Y. J. Org. Chem. 1997, 62, 1594.
- (20) (a) Shi, F.; Deng, Y.; Yang, H.; SiMa, T. Chem. Commun. 2001, 345. (b) Shi, F.; Deng, Y. Chem. Commun. 2001, 443.
- (21) (a) Fukuda, Y.; Utimoto, K. *J. Org. Chem.* **1991**, *56*, 3729. (b) Fukuda, Y.; Utimoto, K. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 2013.
- (22) (a) Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415. (b) Teles, J. H.; Schultz, M. WO-A1 9721648, 1997.
- (23) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563.
- (24) Roembke, P.; Schmidbaur, H.; Cronje, S.; Raubenheimer, H. J. Mol. Catal. A: Chem. 2004, 212, 35.
- (25) Schneider, S. K.; Herrmann, W. A.; Herdtweck, E. Z. Anorg. Allg. Chem. 2003, 629, 2363.
- (26) Sanz, S.; Jones, L. A.; Mohr, F.; Laguna, M. Organometallics 2007, 26, 952.
- (27) Mohr, F.; Sanz, S.; Tiekink, E. R. T.; Laguna, M. Organometallics 2006, 25, 3084.
- (28) de Fremont, P.; Singh, R.; Stevens, E. D.; Petersen, J. L.; Nolan, S. P. Organometallics 2007, 26, 1376.
- (29) Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925.
- (30) Marion, N.; Carlqvist, P.; Gealageas, R.; de Fremont, P.; Maseras, F.; Nolan, S. P. Chem.—Eur. J. 2007, 13, 6437.
- (31) Yu, M.; Li, G. T.; Wang, S. Z.; Zhang, L. M. Adv. Synth. Catal. 2007, 349, 871.
- (32) (a) Harkat, H.; Weibel, J. M.; Pale, P. Tetrahedron Lett. 2006, 47, 6273. (b) Harkat, H.; Weibel, J. M.; Pale, P. Tetrahedron Lett. 2007, 48, 1439.
- (33) (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. *Heterocycles* **1987**, 25, 297. (b) Fukuda, Y.; Utimoto, K. *Synthesis* **1991**, 975.
- (34) Mizushima, E.; Hayashi, T.; Tanaka, M. *Org. Lett.* **2003**, *5*, 3349.
- (35) Zhang, Y. H.; Donahue, J. P.; Li, C. J. Org. Lett. 2007, 9, 627.
- (36) (a) Kang, J. E.; Kim, H. B.; Lee, J. W.; Shin, S. Org. Lett. 2006, 8, 3537 Au(III)-catalyzed variant of this transformation. (b) Hashmi, A. S. K.; Rudolph, M.; Schymura, S.; Visus, J.; Frey, W. Eur. J. Org. Chem. 2006, 4905.
- (37) Reetz, M. T.; Sommer, K. Eur. J. Org. Chem. 2003, 3485.
- (38) (a) Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105. (b) Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem. Eur. J. 2007, 13, 1358.
- (39) (a) Walker, S. D.; Border, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43, 1871. (b) Strieter, E. R.; Blackmond, D. G.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 13978. (c) Kaye, S.; Fox, J. M.; Hicks, F. A.; Buchwald, S. L. Adv. Synth. Catal. 2001, 343, 789.
- (40) Nieto-Oberhuber, C.; Lopez, S.; Munoz, M. P.; Cardenas, D. J.; Bunuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2005, 44, 6146.
- (41) (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526 For the corresponding 5-endo-dig cyclization, see: (b) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed. 2004, 43, 5350.
- (42) Pan, J. H.; Yang, M.; Gao, Q.; Zhu, N. Y.; Yang, D. Synthesis 2007, 2539.
- (43) Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. 2006, 128, 16486.
- (44) (a) Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133.
 (b) Ricard, L.; Gagosz, F. Organometallics 2007, 26, 4704.
- (45) Cabello, N.; Rodriguez, C.; Echavarren, A. M. Synlett 2007, 1753.
- (46) Hashmi, A. S. K.; Schafer, S.; Wolfle, M.; Gil, C. D.; Fischer, P.; Laguna, A.; Blanco, M. C.; Gimeno, M. C. Angew. Chem., Int. Ed. 2007, 46, 6184.
- (47) For Au-catalyzed reactions involving preformed enol ethers, see:(a) Dankwardt, J. W. *Tetrahedron Lett.* 2001, 42, 5809. (b) Nevado, C.; Cardenas, D. J.; Echavarren, A. M. *Chem.—Eur. J.* 2003, 9, 2627.
 (c) Sherry, B. D.; Toste, F. D. *J. Am. Chem. Soc.* 2004, 126, 15978.
 (d) Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; LaLonde, R. L.; Toste, F. D. *Angew. Chem., Int. Ed.* 2006, 45, 5991.
- (48) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 9708.

- (49) Akana, J. A.; Bhattacharyya, K. X.; Muller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2007, 129, 7736.
- (50) (a) Hoffmann-Roder, A.; Krause, N. Org. Lett. 2001, 3, 2537. (b) Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485.
- (51) Deutsch, C.; Gockel, B.; Hoffmann-Roder, A.; Krause, N. Synlett 2007, 1790.
- (52) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066.
- (53) Qian, H.; Han, X. Q.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 9536.
- (54) Zhang, Z. B.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283.
- (55) Fleming, M. P.; Han, Y.-K.; Hodges, L. M.; Johnston, D. A.; Micheli, R. P.; Puentener, K.; Roberts, C. R.; Scalone, M.; Schwindt, M. A. WO 2001/057014, 2001.
- (56) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.
- (57) For examples of chiral phosphoric acids in transition metal catalysis, see: (a) Alper, H.; Hamel, N. J. Am. Chem. Soc. 1990, 112, 2803.
 (b) Pirrung, M. C.; Zhang, J. Tetrahedron Lett. 1992, 33, 5987. (c) Lacasse, M.-C.; Poulard, C.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 12440. (d) Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448. (e) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336. (f) Rueping, M.; Antonchick, A. P.; Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903 For chiral borates, see: (g) Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett. 2000, 2, 4165. (h) Llewellyn, D. B.; Arndtsen, B. A. Tetrahedron Asymmetry 2005, 16, 1789 See also: (i) Dorta, R.; Shimon, L.; Milstein, D. J. Organomet. Chem. 2004, 689, 751.
- (58) For a review of chiral phosphoric acids, see: Connon, S. J. Angew. Chem., Int. Ed. 2006, 45, 3909.
- (59) (a) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500 For intial studies on Au-catalayzed allenylketone cycloisomerization, see: (b) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285.
- (60) Zhou, C. Y.; Chan, P. W. H.; Che, C. M. Org. Lett. 2006, 8, 325.
- (61) Morita, N.; Krause, N. Eur. J. Org. Chem. 2006, 4634, and references therein.
- (62) Nishina, N.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 3314.
- (63) Nishina, N.; Yamamoto, Y. Synlett 2007, 1767.
- (64) Zhang, Z. B.; Bender, C. F.; Widenhoefer, R. A. Org. Lett. 2007, 9, 2887.
- (65) Zhang, Z. B.; Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2007, 129, 14148.
- **2007**, *129*, 14148. (66) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. *Org. Lett.* **2007**, *9*, 4821.
- (67) Liu, Z. S.; Wasmuth, A. S.; Nelson, S. G. J. Am. Chem. Soc. 2006, 128, 10352.
- (68) Liu, C.; Widenhoefer, R. A. Org. Lett. 2007, 9, 1935.
- (69) (a) Yang, C. G.; He, C. J. Am. Chem. Soc. 2005, 127, 6966. (b)
 Brouwer, C.; He, C. Angew. Chem., Int. Ed 2006, 45, 1744. (c) Liu, X.-Y.; Li, C.-H.; Che, C.-M. Org. Lett. 2006, 8, 2707. (d) Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798.
- (70) Nguyen, R. V.; Yao, X. Q.; Li, C. J. Org. Lett. 2006, 8, 2397.
- (71) (a) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179. (b) Li, Z.; Zhang, J.; Brouwer, C.; Yang, C. G.; Reich, N. W.; He, C. Org. Lett. 2006, 8, 4175. See also: (c) Shi, M.; Liu, L.-P.; Tang, J. Org. Lett. 2006, 8, 4043. (d) Rozenman, M. M.; Kanan, M. W.; Liu, D. R. J. Am. Chem. Soc. 2007, 129, 14933. (e) Shi, W.-J.; Liu, Y.; Butti, P.; Togni, A. Adv. Synth. Catal. 2007, 349, 1619. For a commentary on Brønsted acids in Au catalysis, see: (f) Hashmi, A. S. K. Catal. Today 2007, 122, 211.
- (72) Han, X. Q.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2006, 45, 1747. Also see reference 71c.
- (73) Bender, C. F.; Widenhoefer, R. A. Chem. Commun. 2006, 4143.
- (74) Bender, C. F.; Widenhoefer, R. A. Org. Lett. 2006, 8, 5303.
- (75) (a) Yao, X.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 6884. Other unsaturated electrophiles: (b) Nguyen, R. V.; Yao, X. Q.; Bohle, D. S.; Li, C. J. Org. Lett. 2005, 7, 673.
- (76) Zhou, C. Y.; Che, C. M. J. Am. Chem. Soc. 2007, 129, 5828.
- (77) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553.
- (78) (a) Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J. 2003, 9, 4339. (b) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. Catal. Today 2002, 72, 19. (c) Stephen, A.; Hashmi, K.; Frost, T. M.; Bats, J. W. Org. Lett. 2001, 3, 3769.
- (79) Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.; Kurpejovic, E. Angew. Chem., Int. Ed. 2004, 43, 6545.
- (80) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Woelfle, M.; Frey, W.; Bats, J. W. Angew. Chem., Int. Ed. 2005, 44, 2798.
- (81) Hashmi, A. S. K.; Blanco, M. C.; Kurpejovic, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709.

- (82) (a) Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 8654. (b) Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858.
- (83) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 11806.
- (84) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962.
- (85) Lim, C. M.; Kang, J. E.; Lee, J. E.; Shin, S. H. Org. Lett. 2007, 9, 3539.
- (86) Buzas, A. K.; Istrate, F. M.; Gagosz, F. Angew. Chem., Int. Ed. 2007, 46, 1141.
- (87) Kirsch, S. F.; Binder, J. T.; Crone, B.; Duschek, A.; Haug, T. T.; Liebert, C.; Menz, H. Angew. Chem., Int. Ed. 2007, 46, 2310.
- (88) (a) See ref 47c. (b) Sherry, B. D.; Maus, L.; Laforteza, B. N.; Toste, F. D. *J. Am. Chem. Soc.* **2006**, *128*, 8132.
- (89) Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7, 3925.
- (90) (a) Park, S.; Lee, D. J. Am. Chem. Soc. 2006, 128, 10664. (b) Horino, Y.; Luzung, M. R.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 11364.
- (91) Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402.
- (92) (a) Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178. (b) Nieto-Oberhuber, C.; Munoz, M. P.; Lopez, S.; Jimenez-Nuner, E.; Nevado, C.; Herrero-Gomez, E.; Raducan, M.; Echavarren, A. M. Chem.—Eur. J. 2006, 12, 1677. (c) Reference 44.
- (93) Freytag, M.; Ito, S.; Yoshifuji, M. Chem. Asian J. 2006, 1, 693.
- (94) Nieto-Oberhuber, C.; Lopez, S.; Munoz, M. P.; Jimenez-Nunez, E.; Bunuel, E.; Cardenas, D. J.; Echavarren, A. M. Chem.—Eur. J. 2006, 12, 1694.
- (95) Jiménez-Núñez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2005, 45, 5452.
- (96) Lopez, S.; Herrero-Gomez, E.; Perez-Galan, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 6029.
- (97) (a) Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. For an alternate oxidation system, see: (b) Taduri, B. P.; Abu Sohel, S. M.; Cheng, H. M.; Lin, G. Y.; Liu, R. S. Chem. Commun. 2007, 2530.
- (98) Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698.
- (99) Toullec, P. Y.; Genin, E.; Leseurre, L.; Genet, J. P.; Michelet, V. Angew. Chem., Int. Ed. 2006, 45, 7427.
- (100) Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem., Int. Ed. 2007, 46, 5598.
- (101) Munoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293.
- (102) Lemiere, G.; Gandon, V.; Agenet, N.; Goddard, J. P.; de Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2006, 45, 7596.
- (103) Lin, G. Y.; Yang, C. Y.; Liu, R. S. J. Org. Chem. 2007, 72, 6753.
- (104) (a) Lee, J. H.; Toste, F. D. Angew. Chem., Int. Ed. 2007, 46, 912. The Pt-catalyzed reaction was disclosed simultaneously. (b) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2007, 46, 909.
- (105) (a) Huang, X. G.; Zhang, L. M. J. Am. Chem. Soc. 2007, 129, 6398.
 (b) Huang, X. G.; Zhang, L. M. Org. Lett. 2007, 9, 4627.
- (106) Tarselli, M. A.; Chianese, A. R.; Lee, S. J.; Gagne, M. R. Angew. Chem., Int. Ed. 2007, 46, 6670.
- (107) Luzung, M. R.; Mauleon, P.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12402.
- (108) For an initial report on a Au-catalyzed [2 + 2], see: Zhang, L. M. J. Am. Chem. Soc. 2005, 127, 16804.
- (109) Lian, J. J.; Chen, P. C.; Lin, Y. P.; Ting, H. C.; Liu, R. S. J. Am. Chem. Soc. 2006, 128, 11372.
- (110) Buzas, A.; Gagosz, F. Org. Lett. 2006, 8, 515.
- (111) Kang, J. E.; Shin, S. Synlett 2006, 717.
- (112) (a) Lee, E. S.; Yeom, H. S.; Hwang, J. H.; Shin, S. Eur. J. Org. Chem. 2007, 3503. (b) Robles-Machin, R.; Adrio, J.; Carretero, J. C. J. Org. Chem. 2006, 71, 5023. (c) Buzas, A.; Gagosz, F. Synlett 2006, 2727.
- (113) iera, J.; Krumlinde, P.; Strubing, D.; Backvall, J. E. Org. Lett. 2007, 9, 2235.
- (114) Kang, J. E.; Lee, E. S.; Park, S. I.; Shin, S. Tetrahedron Lett. 2005, 46, 7431.
- (115) Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062. For other reactions proceeding by similar group transfers, see: (a) Furstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024. (b) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 4473.
- (116) Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 3181. For similar reactions, see reference 115.
- (117) After submission of this review, the paper entitled "Synthesis of Functionalized Furans via Gold(I)-Catalyzed Claisen-Type Rearrangement" was withdrawn.
- (118) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.

- (119) (a) Scherbaum, F.; Grohmann, A.; Huber, B.; Krüger, C.; Schmidbaur, H. Angew. Chem., Int. Ed. 1988, 27, 1544. (b) Wang, S. G.; Schwarz, W. H. E. J. Am. Chem. Soc. 2004, 126, 1266.
- (120) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160.
- (121) Li, G. T.; Zhang, L. M. Angew. Chem., Int. Ed. 2007, 46, 5156.
- (122) (a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650. (b) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921. Intramolecular variant: (c) Sato, K.; Asao, N.; Yamamoto, Y. J. Org. Chem. 2005, 70, 8977.
- (123) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005, 7, 5289.
- (124) (a) Yao, X.; Li, C. J. Org. Lett. 2006, 8, 1953. For other nucleophiles, see: (b) Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem. 2007, 72, 4462.
- (125) Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289.
- (126) (a) Skouta, R.; Li, C. J. Angew. Chem., Int. Ed. 2007, 46, 1117. See also: (b) Skouta, R.; Li, C. J. Synlett 2007, 1759.
- (127) Kirsch, S. F.; Binder, J. T.; Liebert, C.; Menz, H. Angew. Chem., Int. Ed. 2006, 45, 5878.
- (128) Zhang, J. L.; Schmalz, H. G. Angew. Chem., Int. Ed. 2006, 45, 6704.
- (129) Dai, L. Z.; Qi, M. J.; Shi, Y. L.; Liu, X. G.; Shi, M. Org. Lett. 2007, 9 3191
- (130) Rautenstrauch, V. J. Org. Chem. 1984, 49, 950.
- (131) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802.
- (132) Faza, O. N.; Lopez, C. S.; Alvarez, R.; de Lera, A. R. J. Am. Chem. Soc. 2006, 128, 2434.
- (133) (a) Fürstner, A.; Hannen, P. Chem. Commun. 2004, 2546. (b) Fürstner,
 A.; Hannen, P. Chem.—Eur. J. 2006, 12, 3006. See also: (c) Fehr,
 C.; Galindo, J. Angew. Chem., Int. Ed. 2006, 45, 2901.
- (134) Marion, N.; de Fremont, P.; Lemiere, G.; Stevens, E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Chem. Commun. 2006, 2048.
- (135) (a) Miki, K.; Ohe, K.; Uemura, S. Tetrahedron Lett. 2003, 44, 2019.
 (b) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505.
- (136) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002.
- (137) Amijs, C. H. M.; Opez-Carrillo, V.; Echavarren, A. M. Org. Lett. **2007**, 9, 4021.
- (138) For Au-catalyzed propargyl substitution, see: Yang, T.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2007, 129, 12070.
- (139) (a) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. For other metallotropic shifts with similar substrates, see: (b) Cho, E. J.; Kim, M.; Lee, D. Eur. J. Org. Chem. 2006, 3047.
 (c) Reference 95. (d) Ohe, K.; Fujita, M.; Mastsumoto, H.; Tai, Y. J. Am. Chem. Soc. 2006, 128, 9271.
- (140) Wang, S. Z.; Zhang, L. M. J. Am. Chem. Soc. 2006, 128, 8414.
- (141) Marion, N.; Diez-Gonzalez, S.; de Fremont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem., Int. Ed. 2006, 45, 3647.
- (142) (a) Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436. See also: (b) Oh, C. H.; Kim, A. New. J. Chem. 2007, 31, 1719. (c) Lian, J. J.; Liu, R. S. Chem. Commun. 2007, 1337.
- (143) Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614.
- (144) Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett. 2006, 8, 1957.
- (145) Yeom, H. S.; Yoon, S. J.; Shin, S. *Tetrahedron Lett.* **2007**, *48*, 4817.
- (146) Zhang, L. M.; Wang, S. Z. J. Am. Chem. Soc. 2006, 128, 1442.
- (147) Lemiere, G.; Gandon, V.; Cariou, K.; Fukuyama, T.; Dhimane, A. L.; Fensterbank, L.; Malacria, M. *Org. Lett.* **2007**, *9*, 2207.
- (148) Wang, S. Z.; Zhang, L. M. J. Am. Chem. Soc. **2006**, 128, 14274. (149) See references 107, 108,115a.
- (150) Buzas, A. K.; Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 985.
- (151) Marion, N.; Gealageas, R.; Nolan, S. P. Org. Lett. **2007**, *9*, 2653.
- (152) Gasparrini, F.; Giovannoli, M.; Misiti, D.; Natile, G.; Palmieri, G. Tetrahedron 1983, 39, 3181.

- (153) Cinellu, M. A.; Minghetti, G.; Cocco, T.; Stoccoro, S.; Zucca, A.; Manassero, M. Angew. Chem., Int. Ed. 2005, 44, 6892.
- (154) (a) Guan, B. T.; Xing, D.; Cai, G. X.; Wan, X. B.; Yu, N.; Fang, Z.; Yang, L. P.; Shi, Z. J. J. Am. Chem. Soc. 2005, 127, 18004. (b) Li, H.; Guan, B.; Wang, W.; Xing, D.; Fang, Z.; Wan, X.; Yang, L.; Shi, Z. Tetrahedron 2007, 63, 8430.
- (155) Xing, D.; Guan, B. T.; Cai, G. X.; Fang, Z.; Yang, L. P.; Shi, Z. J. Org. Lett. 2006, 8, 693.
- (156) Liu, Y.; Song, F.; Guo, S. J. Am. Chem. Soc. 2006, 128, 11332.
- (157) Baker, R. T.; Calabrese, J. C.; Westcott, S. A. J. Organomet. Chem. 1995, 498, 109.
- (158) Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Angew. Chem., Int. Ed. 1995, 34, 1336.
- (159) (a) Ito, H.; Yajima, T.; Tateiwa, J.; Hosomi, A. Chem. Commun. 2000, 981. (b) Ito, H.; Yajima, T.; Tateiwa, J.-I.; Hosomi, A. Tetrahedron Lett. 1999, 40, 7807.
- (160) Wile, B. M.; McDonald, R.; Ferguson, M. J.; Stradiotto, M. Organometallics 2007, 26, 1069.
- (161) (a) Lantos, D.; Contel, M.; Sanz, S.; Bodor, A.; Horvath, I. T. J. Organomet. Chem. 2007, 692, 1799. (b) Lantos, D.; Contel, M.; Larrea, A.; Szabo, D.; Horvath, I. T. QSAR Comb. Sci. 2006, 25, 719
- (162) Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. Angew. Chem., Int. Ed. 2007, 46, 7820.
- (163) Ito, H.; Takagi, K.; Miyahara, T.; Sawamura, M. Org. Lett. 2005, 7, 3001.
- (164) Gonzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F. Chem. Commun. 2005, 3451.
- (165) For examples of imine or ketone reduction, see references 157 and 159a.
- (166) (a) Doyle, M. P.; McKervey, M. A. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, 1998.
 (b) Urbano, J.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Diaz-Requejo, M. M.; Perez, P. J. Organometallics 2005, 24, 1528.
- (167) Fructos, M. R.; Belderrain, T. R.; de Fremont, P.; Scott, N. M.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. Angew. Chem., Int. Ed. 2005, 44, 5284.
- (168) Fructos, M. R.; Belderrain, T. R.; Nicasio, M. C.; Nolan, S. P.; Kaur, H.; Diaz-Requejo, M. M.; Perez, P. J. J. Am. Chem. Soc. 2004, 126, 10846
- (169) Li, Z. G.; Ding, X. Y.; He, C. J. Org. Chem. 2006, 71, 5876.
- (170) Fructos, M. R.; deFremont, P.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J. *Organometallics* **2006**, *25*, 2237.
- (171) Li, Z.; Capretto, D. A.; Rahaman, R. O.; He, C. J. Am. Chem. Soc. 2007, 129, 12058.
- (172) Wei, C. M.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584.
- (173) Huang, B. S.; Yao, X. Q.; Li, C. J. Adv. Synth. Catal. 2006, 348, 1528.
- (174) Lo, V. K. Y.; Liu, Y.; Wong, M. K.; Che, C. M. Org. Lett. 2006, 8, 1529.
- (175) Liu, X. Y.; Ding, P.; Huang, J. S.; Che, C. M. Org. Lett. 2007, 9, 2645.
- (176) (a) Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Perez-Ferreras, S.; Sanchez, F. Synlett 2007, 1771. (b) Gonzalez-Arellano, C.; Abad, A.; Corma, A.; Garcia, H.; Iglesias, M.; Sanchez, F. Angew. Chem., Int. Ed. 2007, 46, 1536.
- (177) For aryl boronic acid homocoupling with Au(III), see: Gonzalez-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F. Chem. Commun. 2005, 1990.
- (178) Lavallo, V.; Frey, G. D.; Kousar, S.; Donnadieu, B.; Bertrand, G. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 13569.

CR068430G